1
|
Moreno-Paz M, dos Santos Severino RS, Sánchez-García L, Manchado JM, García-Villadangos M, Aguirre J, Fernández-Martínez MA, Carrizo D, Kobayashi L, Dave A, Warren-Rhodes K, Davila A, Stoker CR, Glass B, Parro V. Life Detection and Microbial Biomarker Profiling with Signs of Life Detector-Life Detector Chip During a Mars Drilling Simulation Campaign in the Hyperarid Core of the Atacama Desert. ASTROBIOLOGY 2023; 23:1259-1283. [PMID: 37930382 PMCID: PMC10825288 DOI: 10.1089/ast.2021.0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2023] [Indexed: 11/07/2023]
Abstract
The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.
Collapse
Affiliation(s)
- Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Rita Sofia dos Santos Severino
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Departament of Física y Matemáticas y de Automática, University of Alcalá de Henares (UAH), Madrid, Spain
| | - Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | | | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Miguel Angel Fernández-Martínez
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Department of Natural Resource Sciences, McGill University, Québec, Canada
| | - Daniel Carrizo
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Linda Kobayashi
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Arwen Dave
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Kim Warren-Rhodes
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Carl Sagan Center, SETI Institute, Mountain View, California, USA
| | - Alfonso Davila
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Carol R. Stoker
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Sobron P, Wang A, Mayer DP, Bentz J, Kong F, Zheng M. Dalangtan Saline Playa in a Hyperarid Region of Tibet Plateau: III. Correlated Multiscale Surface Mineralogy and Geochemistry Survey. ASTROBIOLOGY 2018; 18:1277-1304. [PMID: 30095985 DOI: 10.1089/ast.2017.1777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the first multiscale, systematic field-based testing of correlations between orbital scale advanced spaceborne thermal emission and reflection radiometer visible near-infrared (VNIR)/shortwave infrared (SWIR) reflectance and thermal infrared relative emissivity and outcrop scale Raman spectroscopy, VNIR reflectance, X-ray diffraction (XRD), and laser-induced breakdown spectroscopy (LIBS) mineralogy and chemistry in a saline dry lakebed. This article is one of three reports describing the evolution of salt deposits, meteorological record, and surface and subsurface salt mineralogy in Dalangtan, Qaidam Basin, a hyperarid region of the Tibet Plateau, China, as potential environmental, mineralogical, and biogeochemical analogs to Mars. We have successfully bridged remote sensing data to fine scale mineralogy and chemistry data. We have defined spectral end-members in the northwestern Qaidam Basin and classified areas within the study area on the basis of their spectral similarity to the spectral end-members. Results of VNIR/SWIR classification reveal zonation of spectral units within three large anticlinal domes in the study area that can be correlated between the three structures. Laboratory Raman, VNIR reflectance, XRD, and LIBS data of surface mineral samples collected along a traverse over Xiaoliangshan (XLS) indicate that the surface is dominated by gypsum, Mg sulfates, Na sulfates, halite, and carbonates, with minor concentrations of illite present in most samples as well. Our results can be used as a first step toward better characterizing the potential of orbital reflectance spectroscopy as a method for mineral detection and quantification in salt-rich planetary environments, with the benefit that this technique can be validated on the ground using instruments onboard rovers.
Collapse
Affiliation(s)
- Pablo Sobron
- 1 SETI Institute , Mountain View, California
- 2 Impossible Sensing , St. Louis, Missouri
| | - Alian Wang
- 3 Department of Earth and Planetary Sciences and McDonnell Center for Space Sciences, Washington University in St. Louis , St. Louis, Missouri
| | - David P Mayer
- 4 US Geological Survey, Astrogeology Science Center , Flagstaff, Arizona
| | - Jennifer Bentz
- 5 Department of Geological Sciences and Geological Engineering, Queen's University , Kingston, Canada
| | - Fanjing Kong
- 6 Institute of Mineral Resources, Chinese Academy of Geological Sciences, Key Lab of Saline Lake Resources and Enviornments, Ministry of Lands and Resources, Beijing, China
| | - Mianping Zheng
- 6 Institute of Mineral Resources, Chinese Academy of Geological Sciences, Key Lab of Saline Lake Resources and Enviornments, Ministry of Lands and Resources, Beijing, China
| |
Collapse
|
3
|
Wang A, Sobron P, Kong F, Zheng M, Zhao YYS. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: II. Preservation of Salts with High Hydration Degrees in Subsurface. ASTROBIOLOGY 2018; 18:1254-1276. [PMID: 30152704 DOI: 10.1089/ast.2018.1829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Based on a field expedition to the Dalangtan (DLT) saline playa located in a hyperarid region (Qaidam Basin) on the Tibet Plateau and follow-up investigations, we report the mineralogy and geochemistry of the salt layers in two vertical stratigraphic cross sections in the DLT playa. Na-, Ca-, Mg-, KCaMg-sulfates; Na-, K-, KMg-chlorides; mixed (K, Mg)-chloride-sulfate; and chlorate and perchlorate were identified in the collected samples. This mineral assemblage represents the last-stage precipitation products from Na-K-Mg-Ca-Cl-SO4 brine and the oxychlorine formation from photochemistry reaction similar to other hyperarid regions on Earth. The spatial distributions of these salts in both stratigraphic cross sections suggest very limited brine volumes during the precipitation episodes in the Holocene era. More importantly, sulfates and chlorides with a high degree of hydrations were found preserved within the subsurface salt-rich layers of DLT saline playa, where the environmental conditions at the surface are controlled by the hyperaridity in the Qaidam Basin on the Tibet Plateau. Our findings suggest a very different temperature and relative humidity environment maintained by the hydrous salts in a subsurface salty layer, where the climatic conditions at surface have very little or no influence. This observation bears some similarities with four observations on Mars, which implies not only a large humidity reservoir in midlatitude and equatorial regions on Mars but also habitability potential that warrants further investigation.
Collapse
Affiliation(s)
- Alian Wang
- 1 Department of Earth and Planetary Sciences, McDonnell Center for Space Sciences, Washington University in St. Louis , St. Louis, Missouri
| | - Pablo Sobron
- 2 SETI Institute , Mountain View, California
- 3 Impossible Sensing , St. Louis, Missouri
| | - Fanjing Kong
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Mianping Zheng
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Yu-Yan Sara Zhao
- 5 Institute of Geochemistry , Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
4
|
Ruesch O, Poulet F, Vincendon M, Bibring JP, Carter J, Erkeling G, Gondet B, Hiesinger H, Ody A, Reiss D. Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003694] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Sutter B, Dalton JB, Ewing SA, Amundson R, McKay CP. Terrestrial analogs for interpretation of infrared spectra from the Martian surface and subsurface: Sulfate, nitrate, carbonate, and phyllosilicate-bearing Atacama Desert soils. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000313] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- B. Sutter
- SETI Institute; NASA Ames Research Center; Moffett Field California USA
| | - J. B. Dalton
- SETI Institute; NASA Ames Research Center; Moffett Field California USA
| | - S. A. Ewing
- Division of Ecosystem Sciences; University of California; Berkeley California USA
| | - R. Amundson
- Division of Ecosystem Sciences; University of California; Berkeley California USA
| | - C. P. McKay
- NASA Ames Research Center; Moffett Field California USA
| |
Collapse
|