1
|
Shi M, Zhang Y, Hong W, Liu J, Zhu H, Liu X, Geng Y, Cai Z, Lin S, Ni C. Mechanism of simultaneous lead and chromium removal from contaminated wastewater by a schwertmannite-like mineral. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85364-85375. [PMID: 35793020 DOI: 10.1007/s11356-022-21312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, a schwertmannite-like mineral was synthesized for the removal of lead (Pb) and chromium (Cr) from contaminated wastewater. A shaking flask test was performed (150 r/min, 1 h) with FeSO4·7H2O, H2O2, Na2SiO3, and CaCl2 added for the mineral synthesis reaction. Results show that optimal performance was achieved with the addition of 1.24 g/L FeSO4·7H2O, 0.75 g/L H2O2, 1.27 g/L Na2SiO3, and 0.44 g/L CaCl2 at a water temperature of 28 °C, with coexisting ion (Na+, K+, Mg2+) concentrations of 1.50 mmol/L and 0.50 mmol/L EDTA as a complexing agent. Under these optimal conditions, maximum Pb and Cr removal rates of 95.08% and 97.99%, respectively, were achieved within the first 1 min of the mineral synthesis reaction, with the synthesis reaction completed by 6 min. The simultaneous removal of Pb and Cr during the schwertmannite-like material synthesis process occurred via electrostatic adsorption and coprecipitation. When the concentration of the complexing agent was increased from 0.75 to 6.03 mmol/L, the Pb removal rate decreased from 71.88 to 35.45%, and the Cr removal rate decreased from 95.13 to 75.07%, showing that Pb and Cr removal exhibited significant levels of inhibition. In contrast, varying reaction temperatures induced no significant differences. The Pb and Cr dissolution rates from Pb/Cr-containing schwertmannite-like minerals were 8.18% and 2.86% after 40 days, respectively. Therefore, the risk of secondary dissolution of heavy metals is small.
Collapse
Affiliation(s)
- Mingyan Shi
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yali Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Weibin Hong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiayu Liu
- Guangzhou Zhiqinglan Environmental Technology Company Ltd, Guangzhou, 510006, China
| | - Huijie Zhu
- School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, 471000, China.
| | - Xu Liu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuxin Geng
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhenyin Cai
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shaonan Lin
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chengzhi Ni
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Understanding redox processes during iron precipitation in standing water: implications in formation of iron oxides minerals in the terrestrial planetary environment (especially Mars). PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Concept and Design of Martian Far-IR ORE Spectrometer (MIRORES). REMOTE SENSING 2022. [DOI: 10.3390/rs14122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulfide ores are a major source of noble (Au, Ag, and Pt) and base (Cu, Pb, Zn, Sn, Co, Ni, etc.) metals and will, therefore, be vital for the self-sustainment of future Mars colonies. Martian meteorites are rich in sulfides, which is reflected in recent findings for surface Martian rocks analyzed by the Spirit and Curiosity rovers. However, the only high-resolution (18 m/pixel) infrared (IR) spectrometer orbiting Mars, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), onboard the Mars Reconnaissance Orbiter (MRO), is not well-suited for detecting sulfides on the Martian surface. Spectral interference with silicates impedes sulfide detection in the 0.4–3.9 μm CRISM range. In contrast, at least three common hydrothermal sulfides on Earth and Mars (pyrite, chalcopyrite, marcasite) have prominent absorption peaks in a narrow far-IR (FIR) wavelength range of 23–28 μm. Identifying the global distribution and chemical composition of sulfide ore deposits would help in choosing useful targets for future Mars exploration missions. Therefore, we have designed a new instrument suitable for measuring sulfides in the FIR range called the Martian far-IR Ore Spectrometer (MIRORES). MIRORES will measure radiation in six narrow bands (~0.3 µm in width), including three bands centered on the sulfide absorption bands (23.2, 24.3 and 27.6 µm), two reference bands (21.5 and 26.1) and one band for clinopyroxene interference (29.0 µm). Focusing on sulfides only will make it possible to adapt the instrument size (32 × 32 × 42 cm) and mass (<10 kg) to common microsatellite requirements. The biggest challenges related to this design are: (1) the small field of view conditioned by the high resolution required for such a study (<20 m/pixel), which, in limited space, can only be achieved by the use of the Cassegrain optical system; and (2) a relatively stable measurement temperature to maintain radiometric accuracy and enable precise calibration.
Collapse
|
4
|
Barkatt A, Okutsu M. Obtaining elemental sulfur for Martian sulfur concrete. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221080729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A potential candidate material for the construction of Mars habitats is concrete made from the Martian regolith and sulfur extracted from the regolith itself. Sulfur concrete, which has excellent mechanical properties, can be prepared at a low temperature (<150 °) and without water (unlike Portland-cement concrete). The surface of Mars has a much higher concentration of sulfur than those of the Earth, the Moon, or the asteroids. Sulfur on Mars, however, exists not as elemental sulfur—which is needed in concrete production—but as sulfates (usually hydrated) and sulfides. This paper surveys thermochemical and electrochemical methods that might be used to produce elemental sulfur from its compounds contained in the minerals on Mars. Possible methods include chemical or electrochemical oxidation or decomposition of sulfides, which include sulfides that exist naturally on Mars as well as sulfides that are produced via chemical or electrochemical reduction of sulfates. Some of the methods to obtain elemental sulfur—such as chemical or electrochemical oxidation or decomposition of metal sulfides or hydrogen sulfide—have already been demonstrated. The methods of producing elemental sulfur from sulfur-containing minerals on Mars will have the added benefit of generating byproducts (e.g. water, hydrogen, oxygen, and metals) that are useful for explorations of the Red Planet. In the future, chemical processes for the production of elemental sulfur may also have important industrial applications on Earth.
Collapse
Affiliation(s)
- Aaron Barkatt
- The Catholic University of America, Washington, DC, USA
| | | |
Collapse
|
5
|
Tarnas JD, Mustard JF, Sherwood Lollar B, Stamenković V, Cannon KM, Lorand JP, Onstott TC, Michalski JR, Warr O, Palumbo AM, Plesa AC. Earth-like Habitable Environments in the Subsurface of Mars. ASTROBIOLOGY 2021; 21:741-756. [PMID: 33885329 DOI: 10.1089/ast.2020.2386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Earth's deep continental subsurface, where groundwaters are often isolated for >106 to 109 years, energy released by radionuclides within rock produces oxidants and reductants that drive metabolisms of non-photosynthetic microorganisms. Similar processes could support past and present life in the martian subsurface. Sulfate-reducing microorganisms are common in Earth's deep subsurface, often using hydrogen derived directly from radiolysis of pore water and sulfate derived from oxidation of rock-matrix-hosted sulfides by radiolytically derived oxidants. Radiolysis thus produces redox energy to support a deep biosphere in groundwaters isolated from surface substrate input for millions to billions of years on Earth. Here, we demonstrate that radiolysis by itself could produce sufficient redox energy to sustain a habitable environment in the subsurface of present-day Mars, one in which Earth-like microorganisms could survive wherever groundwater exists. We show that the source localities for many martian meteorites are capable of producing sufficient redox nutrients to sustain up to millions of sulfate-reducing microbial cells per kilogram rock via radiolysis alone, comparable to cell densities observed in many regions of Earth's deep subsurface. Additionally, we calculate variability in supportable sulfate-reducing cell densities between the martian meteorite source regions. Our results demonstrate that martian subsurface groundwaters, where present, would largely be habitable for sulfate-reducing bacteria from a redox energy perspective via radiolysis alone. We present evidence for crustal regions that could support especially high cell densities, including zones with high sulfide concentrations, which could be targeted by future subsurface exploration missions.
Collapse
Affiliation(s)
- J D Tarnas
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J F Mustard
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | | | - V Stamenković
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - K M Cannon
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado, USA
- Space Resources Program, Colorado School of Mines, Golden, Colorado, USA
| | - J-P Lorand
- Université de Nantes Laboratoire de Planétologie et Géodynamique de Nantes, Nantes, France
| | - T C Onstott
- Princeton University Department of Geosciences, Princeton, New Jersey, USA
| | - J R Michalski
- University of Hong Kong Division of Earth & Planetary Science, Hong Kong
| | - O Warr
- University of Toronto Department of Earth Sciences, Toronto, Canada
| | - A M Palumbo
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | - A-C Plesa
- German Aerospace Center (DLR) Institute of Planetary Research, Berlin, Germany
| |
Collapse
|
6
|
Chemtob SM, Nickerson RD, Morris RV, Agresti DG, Catalano JG. Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2469-2488. [PMID: 32802700 PMCID: PMC7427814 DOI: 10.1002/2017je005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface conditions on early Mars were likely anoxic, similar to early Earth, but the timing of the evolution to oxic conditions characteristic of contemporary Mars is unresolved. Ferrous trioctahedral smectites are the thermodynamically predicted products of anoxic basalt weathering, but orbital analyses of Noachian-aged terrains find primarily Fe3+-bearing clay minerals. Rover-based detection of Fe2+-bearing trioctahedral smectites at Gale Crater suggest that ferrous smectites are the unoxidized progenitors of orbitally-detected ferric smectites. To assess this pathway, we conducted ambient-temperature oxidative alteration experiments on four synthetic ferrous smectites having molar Fe/(Mg+Fe) from 1.00 to 0.33. Smectite suspension in air-saturated solutions produced incomplete oxidation (24-38% Fe3+/ΣFe). Additional smectite oxidation occurred upon re-exposure to air-saturated solutions after anoxic hydrothermal recrystallization, which accelerated cation and charge redistribution in the octahedral sheet. Oxidation was accompanied by contraction of the octahedral sheet (d(060) decreased from 1.53-1.56 Å to 1.52 Å), consistent with a shift towards dioctahedral structure. Ferrous smectite oxidation by aqueous hydrogen peroxide solutions resulted in nearly complete Fe2+ oxidation but also led to partial Fe3+ ejection from the structure, producing nanoparticulate hematite. Reflectance spectra of oxidized smectites were characterized by (Fe3+,Mg)2-OH bands at 2.28-2.30 μm, consistent with oxidative formation of dioctahedral nontronite. Accordingly, ferrous smectites are plausible precursors to observed ferric smectites on Mars, and their presence in late-Noachian sedimentary units suggests that anoxic conditions may have persisted on Mars beyond the Noachian.
Collapse
Affiliation(s)
- Steven M Chemtob
- Department of Earth and Environmental Sciences, Temple University, Philadelphia, PA 19122, U.S.A
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | - Ryan D Nickerson
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | | | - David G Agresti
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
7
|
Owens MJ, Riley P, Horbury TS. Probabilistic Solar Wind and Geomagnetic Forecasting Using an Analogue Ensemble or "Similar Day" Approach. SOLAR PHYSICS 2017; 292:69. [PMID: 32055078 PMCID: PMC6991991 DOI: 10.1007/s11207-017-1090-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Effective space-weather prediction and mitigation requires accurate forecasting of near-Earth solar-wind conditions. Numerical magnetohydrodynamic models of the solar wind, driven by remote solar observations, are gaining skill at forecasting the large-scale solar-wind features that give rise to near-Earth variations over days and weeks. There remains a need for accurate short-term (hours to days) solar-wind forecasts, however. In this study we investigate the analogue ensemble (AnEn), or "similar day", approach that was developed for atmospheric weather forecasting. The central premise of the AnEn is that past variations that are analogous or similar to current conditions can be used to provide a good estimate of future variations. By considering an ensemble of past analogues, the AnEn forecast is inherently probabilistic and provides a measure of the forecast uncertainty. We show that forecasts of solar-wind speed can be improved by considering both speed and density when determining past analogues, whereas forecasts of the out-of-ecliptic magnetic field [ B N ] are improved by also considering the in-ecliptic magnetic-field components. In general, the best forecasts are found by considering only the previous 6 - 12 hours of observations. Using these parameters, the AnEn provides a valuable probabilistic forecast for solar-wind speed, density, and in-ecliptic magnetic field over lead times from a few hours to around four days. For B N , which is central to space-weather disturbance, the AnEn only provides a valuable forecast out to around six to seven hours. As the inherent predictability of this parameter is low, this is still likely a marked improvement over other forecast methods. We also investigate the use of the AnEn in forecasting geomagnetic indices Dst and Kp. The AnEn provides a valuable probabilistic forecast of both indices out to around four days. We outline a number of future improvements to AnEn forecasts of near-Earth solar-wind and geomagnetic conditions.
Collapse
Affiliation(s)
- M. J. Owens
- Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading, RG6 6BB UK
| | - P. Riley
- Predictive Science Inc., 9990 Mesa Rim Rd, Suite 170, San Diego, CA 92121 USA
| | - T. S. Horbury
- Blackett Laboratory, Imperial College London, London, SW7 2BZ UK
| |
Collapse
|
8
|
Sklute EC, Jensen HB, Rogers AD, Reeder RJ. Morphological, structural, and spectral characteristics of amorphous iron sulfates. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2015; 120:809-830. [PMID: 29675340 PMCID: PMC5903680 DOI: 10.1002/2014je004784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.
Collapse
Affiliation(s)
- E. C. Sklute
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
- Now at Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - H. B. Jensen
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - A. D. Rogers
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - R. J. Reeder
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
9
|
McLennan SM, Anderson RB, Bell JF, Bridges JC, Calef F, Campbell JL, Clark BC, Clegg S, Conrad P, Cousin A, Des Marais DJ, Dromart G, Dyar MD, Edgar LA, Ehlmann BL, Fabre C, Forni O, Gasnault O, Gellert R, Gordon S, Grant JA, Grotzinger JP, Gupta S, Herkenhoff KE, Hurowitz JA, King PL, Le Mouélic S, Leshin LA, Léveillé R, Lewis KW, Mangold N, Maurice S, Ming DW, Morris RV, Nachon M, Newsom HE, Ollila AM, Perrett GM, Rice MS, Schmidt ME, Schwenzer SP, Stack K, Stolper EM, Sumner DY, Treiman AH, VanBommel S, Vaniman DT, Vasavada A, Wiens RC, Yingst RA. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 2013; 343:1244734. [PMID: 24324274 DOI: 10.1126/science.1244734] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.
Collapse
Affiliation(s)
- S M McLennan
- Department of Geosciences, State University of New York, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dalton JB, Pitman KM. Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je004036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Thollot P, Mangold N, Ansan V, Le Mouélic S, Milliken RE, Bishop JL, Weitz CM, Roach LH, Mustard JF, Murchie SL. Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je004028] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Bishop JL, Parente M, Weitz CM, Noe Dobrea EZ, Roach LH, Murchie SL, McGuire PC, McKeown NK, Rossi CM, Brown AJ, Calvin WM, Milliken R, Mustard JF. Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003352] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Murchie SL, Mustard JF, Ehlmann BL, Milliken RE, Bishop JL, McKeown NK, Noe Dobrea EZ, Seelos FP, Buczkowski DL, Wiseman SM, Arvidson RE, Wray JJ, Swayze G, Clark RN, Des Marais DJ, McEwen AS, Bibring JP. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003342] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Le Deit L, Le Mouélic S, Bourgeois O, Combe JP, Mège D, Sotin C, Gendrin A, Hauber E, Mangold N, Bibring JP. Ferric oxides in East Candor Chasma, Valles Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: Identification and geological interpretation. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002950] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Rao MN, Nyquist LE, Wentworth SJ, Sutton SR, Garrison DH. The nature of Martian fluids based on mobile element studies in salt-assemblages from Martian meteorites. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
McSween HY, Ruff SW, Morris RV, Gellert R, Klingelhöfer G, Christensen PR, McCoy TJ, Ghosh A, Moersch JM, Cohen BA, Rogers AD, Schröder C, Squyres SW, Crisp J, Yen A. Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002970] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Tosca NJ, McLennan SM, Dyar MD, Sklute EC, Michel FM. Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Knoll AH, Jolliff BL, Farrand WH, Bell III JF, Clark BC, Gellert R, Golombek MP, Grotzinger JP, Herkenhoff KE, Johnson JR, McLennan SM, Morris R, Squyres SW, Sullivan R, Tosca NJ, Yen A, Learner Z. Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002949] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Berquó TS, Banerjee SK, Ford RG, Penn RL, Pichler T. High crystallinity Si-ferrihydrite: An insight into its Néel temperature and size dependence of magnetic properties. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004583] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Glotch TD, Bandfield JL, Christensen PR, Calvin WM, McLennan SM, Clark BC, Rogers AD, Squyres SW. Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002672] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Timothy D. Glotch
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - Joshua L. Bandfield
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | | | - Wendy M. Calvin
- Department of Geological Sciences; University of Nevada; Reno Nevada USA
| | - Scott M. McLennan
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | | | - A. Deanne Rogers
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | | |
Collapse
|