1
|
Vertical Profile of Ozone Derived from Combined MLS and TES Satellite Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ozone is one of the most important gases in the atmosphere as it plays different roles based on the levels it presents. The ozone layer in the stratosphere protects life on Earth by absorbing ultraviolet (UV) radiance while harming life at ground-level. In order to better understand the source of ozone pollution, transport of ozone, stratosphere-troposphere exchange of ozone, it is necessary to estimate the vertical profile of ozone. In this study, we derive the vertical ozone profile throughout the troposphere to the stratosphere by combing ozone retrievals from MLS (Microwave Limb Sounder) and TES (Tropospheric Emission Spectrometer). The combination algorithm is based on the MLS and TES retrieved vertical profiles of ozone, and averaging kernels of MLS, which represent the vertical sensitivity of the instrument. The combination algorithm was applied to the pairs of MLS and TES over the globe in 2007 as examples. The combined vertical profiles were compared with ozonesonde observations for validation, which indicate that the combined products extract information from MLS and TES have less biases than that of MLS or TES alone in general in both stratosphere and troposphere under certain quantitative criteria.
Collapse
|
2
|
Sensitivity of Optimal Estimation Satellite Retrievals to Misspecification of the Prior Mean and Covariance, with Application to OCO-2 Retrievals. REMOTE SENSING 2019. [DOI: 10.3390/rs11232770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimal Estimation (OE) is a popular algorithm for remote sensing retrievals, partly due to its explicit parameterization of the sources of error and the ability to propagate them into estimates of retrieval uncertainty. These properties require specification of the prior distribution of the state vector. In many remote sensing applications, the true priors are multivariate and hard to characterize properly. Instead, priors are often constructed based on subject-matter expertise, existing empirical knowledge, and a need for computational expediency, resulting in a “working prior.” This paper explores the retrieval bias and the inaccuracy in retrieval uncertainty caused by explicitly separating the true prior (the probability distribution of the underlying state) from the working prior (the probability distribution used within the OE algorithm), with an application to Orbiting Carbon Observatory-2 (OCO-2) retrievals. We find that, in general, misspecifying the mean in the working prior will lead to biased retrievals, and misspecifying the covariance in the working prior will lead to inaccurate estimates of the retrieval uncertainty, though their effects vary depending on the state-space signal-to-noise ratio of the observing instrument. Our results point towards some attractive properties of a class of uninformative priors that is implicit for least-squares retrievals. Furthermore, our derivations provide a theoretical basis, and an understanding of the trade-offs involved, for the practice of inflating a working-prior covariance in order to reduce the prior’s impact on a retrieval (e.g., for OCO-2 retrievals). Finally, our results also lead to practical recommendations for specifying the prior mean and the prior covariance in OE.
Collapse
|
3
|
Choi HD, Liu H, Crawford JH, Considine DB, Allen DJ, Duncan BN, Horowitz LW, Rodriguez JM, Strahan SE, Zhang L, Liu X, Damon MR, Steenrod SD. Global O 3-CO Correlations in a Chemistry and Transport Model During July-August: Evaluation with TES Satellite Observations and Sensitivity to Input Meteorological Data and Emissions. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:8429-8452. [PMID: 32457810 PMCID: PMC7250209 DOI: 10.5194/acp-17-8429-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618hPa) O3-CO correlations determined by the measurements from Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July-August). The model is driven by three meteorological data sets (fvGCM with sea surface temperature for 1995, GEOS4-DAS for 2005, and MERRA for 2005), allowing us to examine the sensitivity of model O3-CO correlations to input meteorological data. Model simulations of radionuclide tracers (222Rn, 210Pb, and 7Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O3 values are evaluated with climatological ozone profiles from ozonesonde measurements and satellite tropospheric O3 columns. Despite the fact that three simulations show significantly different global and regional distributions of O3 and CO concentrations, all simulations show similar patterns of O3-CO correlations on a global scale. These patterns are consistent with those derived from TES observations, except in the tropical easterly biomass burning outflow regions. Discrepancies in regional O3-CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various emissions drive global O3-CO correlation patterns, we examine the sensitivity of GMI/MERRA model-calculated O3 and CO concentrations and their correlations to emission types (fossil fuel, biomass burning, biogenic, and lightning NOx emissions). Fossil fuel and biomass burning emissions are mainly responsible for the strong positive O3-CO correlations over continental outflow regions in both hemispheres. Biogenic emissions have a relatively smaller impact on O3-CO correlations than other emissions, but are largely responsible for the negative correlations over the tropical eastern Pacific, reflecting the fact that O3 is consumed and CO generated during the atmospheric oxidation process of isoprene under low NOx conditions. We find that lightning NOx emissions degrade both positive correlations at mid-/high- latitudes and negative correlations in the tropics because ozone production downwind of lightning NOx emissions is not directly related to the emission and transport of CO. Our study concludes that O3-CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.
Collapse
Affiliation(s)
| | - Hongyu Liu
- National Institute of Aerospace, Hampton, VA
| | | | - David B. Considine
- NASA Langley Research Center, Hampton, VA
- Now at NASA Headquarters, Washington, D.C
| | | | | | | | | | - Susan E. Strahan
- NASA Goddard Space Flight Center, Greenbelt, MD
- Universities Space Research Association, Columbia, MD
| | - Lin Zhang
- Harvard University, Cambridge, MA
- Now at Peking University, Beijing, China
| | | | - Megan R. Damon
- NASA Goddard Space Flight Center, Greenbelt, MD
- Science Systems and Applications, Inc., Lanham, MD
| | - Stephen D. Steenrod
- NASA Goddard Space Flight Center, Greenbelt, MD
- Universities Space Research Association, Columbia, MD
| |
Collapse
|
4
|
Field RD, Luo M, Fromm M, Voulgarakis A, Mangeon S, Worden J. Simulating the Black Saturday 2009 smoke plume with an interactive composition-climate model: sensitivity to emissions amount, timing and injection height. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:4296-4316. [PMID: 32747872 PMCID: PMC7398419 DOI: 10.1002/2015jd024343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We simulated the high-altitude smoke plume from the early February 2009 Black Saturday bushfires in southeastern Australia using the NASA GISS ModelE2. To the best of our knowledge, this is the first single-plume analysis of biomass burning emissions injected directly into the upper-troposphere/lower stratosphere (UTLS) using a full-complexity composition-climate model. We compared simulated carbon monoxide (CO) to a new Aura TES/MLS joint CO retrieval, focusing on the plume's initial transport eastward, anticyclonic circulation to the north of New Zealand, westward transport in the lower stratospheric easterlies, and arrival over Africa at the end of February. Our goal was to determine the sensitivity of the simulated plume to prescribed injection height, emissions amount and emissions timing from different sources for a full complexity model when compared to Aura. The most realistic plumes were obtained using injection heights in the UTLS, including one drawn from ground-based radar data. A six-hour emissions pulse or emissions tied to independent estimates of hourly fire behavior produced a more realistic plume in the lower stratosphere compared to the same emissions amount being released evenly over 12 or 24-hours. Simulated CO in the plume was highly sensitive to the differences between emissions amounts estimated from the Global Fire Emissions Database and from detailed, ground-based estimates of fire growth. The emissions amount determined not only the CO concentration of the plume, but the proportion of the plume that entered the stratosphere. We speculate that this is due to either or both non-linear CO loss with a weakened OH sink, or plume self-lofting driven by shortwave absorption of the co-emitted aerosols.
Collapse
Affiliation(s)
- Robert D Field
- NASA Goddard Institute for Space Studies, New York, NY, USA
- Dept. of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Ming Luo
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, USA
| | - Mike Fromm
- Naval Research Laboratory, Washington DC, USA
| | | | | | - John Worden
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
5
|
Ford B, Heald CL. An A-train and model perspective on the vertical distribution of aerosols and CO in the Northern Hemisphere. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Boynard A, Pfister GG, Edwards DP. Boundary layer versus free tropospheric CO budget and variability over the United States during summertime. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Mu M, Randerson JT, van der Werf GR, Giglio L, Kasibhatla P, Morton D, Collatz GJ, DeFries RS, Hyer EJ, Prins EM, Griffith DWT, Wunch D, Toon GC, Sherlock V, Wennberg PO. Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016245] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Mu
- Department of Earth System Science; University of California; Irvine California USA
| | - J. T. Randerson
- Department of Earth System Science; University of California; Irvine California USA
| | - G. R. van der Werf
- Faculty of Earth and Life Sciences; VU University Amsterdam; Amsterdam Netherlands
| | - L. Giglio
- Department of Geography; University of Maryland; College Park Maryland USA
| | - P. Kasibhatla
- Nicholas School of the Environment and Earth Sciences; Duke University; Durham North Carolina USA
| | - D. Morton
- NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | - G. J. Collatz
- NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | - R. S. DeFries
- Department of Ecology, Evolution, and Environmental Biology; Columbia University; New York New York USA
| | - E. J. Hyer
- Marine Meteorology Division; Naval Research Laboratory; Monterey California USA
| | - E. M. Prins
- Cooperative Institute for Meteorological Satellite Studies; University of Wisconsin-Madison; Madison Wisconsin USA
| | - D. W. T. Griffith
- School of Chemistry; University of Wollongong; Wollongong, New South Wales Australia
| | - D. Wunch
- Divisions of Engineering and Applied Science and Geological and Planetary Science; California Institute of Technology; Pasadena California USA
| | - G. C. Toon
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - V. Sherlock
- National Institute of Water and Atmospheric Research, Ltd.; Wellington New Zealand
| | - P. O. Wennberg
- Divisions of Engineering and Applied Science and Geological and Planetary Science; California Institute of Technology; Pasadena California USA
| |
Collapse
|
8
|
Wu L, Su H, Jiang JH. Regional simulations of deep convection and biomass burning over South America: 1. Model evaluations using multiple satellite data sets. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Worden HM, Deeter MN, Edwards DP, Gille JC, Drummond JR, Nédélec P. Observations of near-surface carbon monoxide from space using MOPITT multispectral retrievals. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014242] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Deeter MN, Edwards DP, Gille JC, Emmons LK, Francis G, Ho SP, Mao D, Masters D, Worden H, Drummond JR, Novelli PC. The MOPITT version 4 CO product: Algorithm enhancements, validation, and long-term stability. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013005] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
de Laat ATJ, Gloudemans AMS, Aben I, Schrijver H. Global evaluation of SCIAMACHY and MOPITT carbon monoxide column differences for 2004–2005. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Ho SP, Edwards DP, Gille JC, Luo M, Osterman GB, Kulawik SS, Worden H. A global comparison of carbon monoxide profiles and column amounts from Tropospheric Emission Spectrometer (TES) and Measurements of Pollution in the Troposphere (MOPITT). ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd012242] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Nassar R, Logan JA, Megretskaia IA, Murray LT, Zhang L, Jones DBA. Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Niño using TES observations and the GEOS-Chem model. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011760] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Hamilton JF, Allen G, Watson NM, Lee JD, Saxton JE, Lewis AC, Vaughan G, Bower KN, Flynn MJ, Crosier J, Carver GD, Harris NRP, Parker RJ, Remedios JJ, Richards NAD. Observations of an atmospheric chemical equator and its implications for the tropical warm pool region. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009940] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Parrington M, Jones DBA, Bowman KW, Horowitz LW, Thompson AM, Tarasick DW, Witte JC. Estimating the summertime tropospheric ozone distribution over North America through assimilation of observations from the Tropospheric Emission Spectrometer. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009341] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Lopez JP, Luo M, Christensen LE, Loewenstein M, Jost H, Webster CR, Osterman G. TES carbon monoxide validation during two AVE campaigns using the Argus and ALIAS instruments on NASA's WB-57F. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008811] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Osterman GB, Kulawik SS, Worden HM, Richards NAD, Fisher BM, Eldering A, Shephard MW, Froidevaux L, Labow G, Luo M, Herman RL, Bowman KW, Thompson AM. Validation of Tropospheric Emission Spectrometer (TES) measurements of the total, stratospheric, and tropospheric column abundance of ozone. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008801] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Luo M, Rinsland C, Fisher B, Sachse G, Diskin G, Logan J, Worden H, Kulawik S, Osterman G, Eldering A, Herman R, Shephard M. TES carbon monoxide validation with DACOM aircraft measurements during INTEX-B 2006. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008803] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|