1
|
Astitha M, Kioutsioukis I, Fisseha GA, Bianconi R, Bieser J, Christensen JH, Cooper OR, Galmarini S, Hogrefe C, Im U, Johnson B, Liu P, Nopmongcol U, Petropavlovskikh I, Solazzo E, Tarasick DW, Yarwood G. Seasonal ozone vertical profiles over North America using the AQMEII3 group of air quality models: model inter-comparison and stratospheric intrusions. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:13925-13945. [PMID: 30800155 PMCID: PMC6382018 DOI: 10.5194/acp-18-13925-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study evaluates simulated vertical ozone profiles produced in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) against ozonesonde observations in North America for the year 2010. Four research groups from the United States (US) and Europe have provided modeled ozone vertical profiles to conduct this analysis. Because some of the modeling systems differ in their meteorological drivers, wind speed and temperature are also included in the analysis. In addition to the seasonal ozone profile evaluation for 2010, we also analyze chemically inert tracers designed to track the influence of lateral boundary conditions on simulated ozone profiles within the modeling domain. Finally, cases of stratospheric ozone intrusions during May-June 2010 are investigated by analyzing ozonesonde measurements and the corresponding model simulations at Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) experiment sites in the western United States. The evaluation of the seasonal ozone profiles reveals that, at a majority of the stations, ozone mixing ratios are underestimated in the 1-6 km range. The seasonal change noted in the errors follows the one seen in the variance of ozone mixing ratios, with the majority of the models exhibiting less variability than the observations. The analysis of chemically inert tracers highlights the importance of lateral boundary conditions up to 250 hPa for the lower-tropospheric ozone mixing ratios (0-2 km). Finally, for the stratospheric intrusions, the models are generally able to reproduce the location and timing of most intrusions but underestimate the magnitude of the maximum mixing ratios in the 2-6 km range and overestimate ozone up to the first kilometer possibly due to marine air influences that are not accurately described by the models. The choice of meteorological driver appears to be a greater predictor of model skill in this altitude range than the choice of air quality model.
Collapse
Affiliation(s)
- Marina Astitha
- University of Connecticut, Civil and Environmental Engineering, Storrs, CT 06269-3037, USA
| | | | - Ghezae Araya Fisseha
- University of Connecticut, Civil and Environmental Engineering, Storrs, CT 06269-3037, USA
| | | | - Johannes Bieser
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht, Germany
- German Aerospace Center (DLR), National Aeronautics and Space Center, Weßling, Germany
| | - Jesper H. Christensen
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Owen R. Cooper
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO 80305, USA
| | | | - Christian Hogrefe
- Environmental Protection Agency Research Triangle Park, Research Triangle Park, NC, USA
| | - Ulas Im
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Bryan Johnson
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Peng Liu
- NRC Fellowship Participant at Environmental Protection Agency Research Triangle Park, NC, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | | | - David W. Tarasick
- Air Quality Research Division, Environment and Climate Change Canada, Downsview, Ontario, Canada
| | - Greg Yarwood
- Ramboll, 773 San Marin Dr., Suite 2115, Novato, CA 94945, USA
| |
Collapse
|
2
|
Lefohn AS, Malley CS, Smith L, Wells B, Hazucha M, Simon H, Naik V, Mills G, Schultz MG, Paoletti E, De Marco A, Xu X, Zhang L, Wang T, Neufeld HS, Musselman RC, Tarasick D, Brauer M, Feng Z, Tang H, Kobayashi K, Sicard P, Solberg S, Gerosa G. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. ELEMENTA (WASHINGTON, D.C.) 2018; 1:1. [PMID: 30345319 PMCID: PMC6192432 DOI: 10.1525/elementa.279] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics.
Collapse
Affiliation(s)
| | - Christopher S. Malley
- Stockholm Environment Institute, Environment
Department, University of York, York, UK
- NERC Centre for Ecology and Hydrology, Penicuik,
UK
- School of Chemistry, University of Edinburgh,
Edinburgh, UK
| | - Luther Smith
- Alion Science and Technology, Inc., Research
Triangle Park, NC, US
| | - Benjamin Wells
- Office of Air Quality Planning and Standards, U.S.
EPA, Research Triangle Park, NC, US
| | - Milan Hazucha
- Center for Environmental Medicine, Asthma, and Lung
Biology, University of North Carolina, Chapel Hill, NC, US
| | - Heather Simon
- Office of Air Quality Planning and Standards, U.S.
EPA, Research Triangle Park, NC, US
| | - Vaishali Naik
- NOAA Geophysical Fluid Dynamics Laboratory,
Princeton, NJ, US
| | - Gina Mills
- NERC Centre for Ecology and Hydrology,
Environment Centre Wales, Bangor, UK
| | | | - Elena Paoletti
- Institute for Sustainable Plant Protection,
National Research Council, Florence, IT
| | - Alessandra De Marco
- Italian National Agency for New
Technologies, Energy and Sustainable Economic Development, Rome, IT
| | - Xiaobin Xu
- Key Laboratory for Atmospheric Chemistry, Institute of
Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing,
CN
| | - Li Zhang
- Department of Civil and
Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, CN
| | - Tao Wang
- Department of Civil and
Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, CN
| | | | | | - David Tarasick
- Air Quality Research Division,
Environment and Climate Change Canada, Downsview, ON, CA
| | - Michael Brauer
- School of Population and Public
Health, University of British Columbia, Vancouver, British Columbia, CA
| | - Zhaozhong Feng
- Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing, CN
| | - Haoye Tang
- Institute of Soil Sciences,
Chinese Academy of Sciences, Nanjing, CN
| | - Kazuhiko Kobayashi
- Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, JP
| | - Pierre Sicard
- ACRI-HE, 260 route du Pin
Montard BP234, Sophia Antipolis, FR
| | - Sverre Solberg
- Norwegian Institute for Air
Research (NILU), Kjeller, NO
| | - Giacomo Gerosa
- Dipartimento di Matematica
e Fisica, Università Cattolica del Sacro Cuore, Brescia, IT
| |
Collapse
|
3
|
Kuang S, Newchurch MJ, Thompson AM, Stauffer RM, Johnson BJ, Wang L. Ozone Variability and Anomalies Observed during SENEX and SEAC 4RS Campaigns in 2013. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:11227-11241. [PMID: 30057866 PMCID: PMC6058320 DOI: 10.1002/2017jd027139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper-tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anti-correlated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to mid-troposphere are within 3.0-4.1 ppbv·K-1. The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52±33% (35±24 ppbv) with a mean minimum relative humidity of 2.3±1.7%.
Collapse
Affiliation(s)
- Shi Kuang
- Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| | - Michael J Newchurch
- Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| | - Anne M Thompson
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Ryan M Stauffer
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Bryan J Johnson
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO 80305, USA
| | - Lihua Wang
- Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| |
Collapse
|
4
|
Lin M, Fiore AM, Cooper OR, Horowitz LW, Langford AO, Levy H, Johnson BJ, Naik V, Oltmans SJ, Senff CJ. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018151] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
An Investigation of Two Highest Ozone Episodes During the Last Decade in New England. ATMOSPHERE 2011. [DOI: 10.3390/atmos3010059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Tarasick DW, Jin JJ, Fioletov VE, Liu G, Thompson AM, Oltmans SJ, Liu J, Sioris CE, Liu X, Cooper OR, Dann T, Thouret V. High-resolution tropospheric ozone fields for INTEX and ARCTAS from IONS ozonesondes. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Bourqui MS, Trépanier PY. Descent of deep stratospheric intrusions during the IONS August 2006 campaign. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Pfister GG, Emmons LK, Hess PG, Lamarque JF, Thompson AM, Yorks JE. Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd010190] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|