1
|
Tergolina VB, Calzavarini E, Mompean G, Berti S. Effects of large-scale advection and small-scale turbulent diffusion on vertical phytoplankton dynamics. Phys Rev E 2021; 104:065106. [PMID: 35030936 DOI: 10.1103/physreve.104.065106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Turbulence has been recognized as a factor of paramount importance for the survival or extinction of sinking phytoplankton species. However, dealing with its multiscale nature in models of coupled fluid and biological dynamics is a formidable challenge. Advection by coherent structures, such as those related to winter convection and Langmuir circulation, is also recognized to play a role in the survival and localization of phytoplankton. In this work we revisit a theoretically appealing model for phytoplankton vertical dynamics, and numerically investigate how large-scale fluid motions affect the survival conditions and the spatial distribution of the biological population. For this purpose, and to work with realistic parameter values, we adopt a kinematic flow field to account for the different spatial and temporal scales of turbulent motions. The dynamics of the population density are described by an advection-reaction-diffusion model with a spatially heterogeneous growth term proportional to sunlight availability. We explore the role of fluid transport by progressively increasing the complexity of the flow in terms of spatial and temporal scales. We find that, due to the large-scale circulation, phytoplankton accumulates in downwelling regions and its growth is reduced, confirming previous indications in slightly different conditions. We then explain the observed phenomenology in terms of a plankton filament model. Moreover, by contrasting the results in our different flow cases, we show that the large-scale coherent structures have an overwhelming importance. Indeed, we find that smaller-scale motions only quite weakly affect the dynamics, without altering the general mechanism identified. Such results are relevant for parametrizations in numerical models of phytoplankton life cycles in realistic oceanic flow conditions.
Collapse
Affiliation(s)
| | - Enrico Calzavarini
- Université Lille, ULR 7512 - Unité de Mécanique de Lille Joseph Boussinesq (UML), F-59000 Lille, France
| | - Gilmar Mompean
- Université Lille, ULR 7512 - Unité de Mécanique de Lille Joseph Boussinesq (UML), F-59000 Lille, France
| | - Stefano Berti
- Université Lille, ULR 7512 - Unité de Mécanique de Lille Joseph Boussinesq (UML), F-59000 Lille, France
| |
Collapse
|
2
|
Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. REMOTE SENSING 2019. [DOI: 10.3390/rs11020208] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A (an) cyclonic (anticyclonic) eddy is usually associated with a cold (warm) core caused by the eddy-induced divergence (convergence) motion. However, there are also some cyclonic (anticyclonic) eddies with warm (cold) cores in the North Pacific, named cyclonic warm-core eddies (CWEs) and anticyclonic cold-core eddies (ACEs) in this study, respectively. Their spatio-temporal characteristics and regional dependence are analyzed using the multi-satellite merged remote sensing datasets. The CWEs are mainly concentrated in the northwestern and southeastern North Pacific. However, besides these two areas, the ACEs are also concentrated in the northeastern Pacific. The annual mean number decreases year by year for both CWEs and ACEs, and the decreasing rate of the CWEs is about two times as large as that of the ACEs. Moreover, the CWEs and ACEs also exhibit a significant seasonal variation, which are intense in summer and weak in winter. Based on the statistics of dynamic characteristics in seven subregions, the Kuroshio Extension region could be considered as the most active area for the CWEs and ACEs. Two possible mechanisms for CW-ACEs generation are discussed by analyzing two cases.
Collapse
|
3
|
The role of submesoscale currents in structuring marine ecosystems. Nat Commun 2018; 9:4758. [PMID: 30420651 PMCID: PMC6232172 DOI: 10.1038/s41467-018-07059-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
From microbes to large predators, there is increasing evidence that marine life is shaped by short-lived submesoscales currents that are difficult to observe, model, and explain theoretically. Whether and how these intense three-dimensional currents structure the productivity and diversity of marine ecosystems is a subject of active debate. Our synthesis of observations and models suggests that the shallow penetration of submesoscale vertical currents might limit their impact on productivity, though ecological interactions at the submesoscale may be important in structuring oceanic biodiversity. Short-lived three-dimensional submesoscale currents, responsible for swirling ocean color chlorophyll filaments, have long been thought to affect productivity. Current research suggests they may not be effective in enhancing phytoplankton growth, but may have important contributions to biodiversity.
Collapse
|
4
|
Grošelj D, Jenko F, Frey E. How turbulence regulates biodiversity in systems with cyclic competition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033009. [PMID: 25871204 DOI: 10.1103/physreve.91.033009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Cyclic, nonhierarchical interactions among biological species represent a general mechanism by which ecosystems are able to maintain high levels of biodiversity. However, species coexistence is often possible only in spatially extended systems with a limited range of dispersal, whereas in well-mixed environments models for cyclic competition often lead to a loss of biodiversity. Here we consider the dispersal of biological species in a fluid environment, where mixing is achieved by a combination of advection and diffusion. In particular, we perform a detailed numerical analysis of a model composed of turbulent advection, diffusive transport, and cyclic interactions among biological species in two spatial dimensions and discuss the circumstances under which biodiversity is maintained when external environmental conditions, such as resource supply, are uniform in space. Cyclic interactions are represented by a model with three competitors, resembling the children's game of rock-paper-scissors, whereas the flow field is obtained from a direct numerical simulation of two-dimensional turbulence with hyperviscosity. It is shown that the space-averaged dynamics undergoes bifurcations as the relative strengths of advection and diffusion compared to biological interactions are varied.
Collapse
Affiliation(s)
- Daniel Grošelj
- Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany
| | - Frank Jenko
- Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547, USA
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| |
Collapse
|
5
|
Olla P. Effect of demographic noise in a phytoplankton-zooplankton model of bloom dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012712. [PMID: 23410364 DOI: 10.1103/physreve.87.012712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/27/2012] [Indexed: 06/01/2023]
Abstract
An extension of the Truscott-Brindley model [Bull. Math. Biol. 56, 981 (1994)] is derived to account for the effect of demographic fluctuations. In the presence of seasonal forcing and sufficiently shallow water conditions, the fluctuations induced by the discreteness of the zooplankton component appear sufficient to cause switching between the bloom and no-bloom cycles predicted at the mean-field level by the model. The destabilization persists in the thermodynamic limit of a water basin infinitely extended in the horizontal direction.
Collapse
Affiliation(s)
- Piero Olla
- ISAC-CNR and INFN, Sez. Cagliari, I-09042 Monserrato, Italy
| |
Collapse
|
6
|
von Kameke A, Huhn F, Pérez-Muñuzuri V. Asymptotic diffusion coefficients and anomalous diffusion in a meandering jet flow under environmental fluctuations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:017201. [PMID: 22400707 DOI: 10.1103/physreve.85.017201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/16/2011] [Indexed: 05/31/2023]
Abstract
The nontrivial dependence of the asymptotic diffusion on noise intensity has been studied for a Hamiltonian flow mimicking the Gulf Jet Stream. Three different diffusion regimes have been observed depending on the noise intensity. For intermediate noise the asymptotic diffusion decreases with noise intensity at a rate which is linearly dependent to the flow's meander amplitude. Increasing the noise the fluid transport passes through a superdiffusive regime and finally becomes diffusive again at large noise intensities. The presence of inner circulation regimes in the flow has been found to be determinant to explain the observed behavior.
Collapse
Affiliation(s)
- A von Kameke
- Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | | |
Collapse
|
7
|
McKiver WJ, Neufeld Z. Resonant plankton patchiness induced by large-scale turbulent flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:016303. [PMID: 21405770 DOI: 10.1103/physreve.83.016303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Indexed: 05/30/2023]
Abstract
Here we study how large-scale variability of oceanic plankton is affected by mesoscale turbulence in a spatially heterogeneous environment. We consider a phytoplankton-zooplankton (PZ) ecosystem model, with different types of zooplankton grazing functions, coupled to a turbulent flow described by the two-dimensional Navier-Stokes equations, representing large-scale horizontal transport in the ocean. We characterize the system using a dimensionless parameter, γ=T(B)/T(F), which is the ratio of the ecosystem biological time scale T(B) and the flow time scale T(F). Through numerical simulations, we examine how the PZ system depends on the time-scale ratio γ and find that the variance of both species changes significantly, with maximum phytoplankton variability at intermediate mixing rates. Through an analysis of the linearized population dynamics, we find an analytical solution based on the forced harmonic oscillator, which explains the behavior of the ecosystem, where there is resonance between the advection and the ecosystem predator-prey dynamics when the forcing time scales match the ecosystem time scales. We also examine the dependence of the power spectra on γ and find that the resonance behavior leads to different spectral slopes for phytoplankton and zooplankton, in agreement with observations.
Collapse
Affiliation(s)
- William J McKiver
- School of Mathematical Sciences and Complex and Adaptive Systems Laboratory, Dublin, Ireland
| | | |
Collapse
|
8
|
Cole ST, Rudnick DL, Colosi JA. Seasonal evolution of upper-ocean horizontal structure and the remnant mixed layer. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jc005654] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
McKiver WJ, Neufeld Z. Influence of turbulent advection on a phytoplankton ecosystem with nonuniform carrying capacity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:061902. [PMID: 19658519 DOI: 10.1103/physreve.79.061902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/01/2009] [Indexed: 05/28/2023]
Abstract
In this work we study a plankton ecosystem model in a turbulent flow. The plankton model we consider contains logistic growth with a spatially varying background carrying capacity and the flow dynamics are generated using the two-dimensional (2D) Navier-Stokes equations. We characterize the system in terms of a dimensionless parameter, gamma identical with TB/TF, which is the ratio of the ecosystem biological time scales TB and the flow time scales TF. We integrate this system numerically for different values of gamma until the mean plankton reaches a statistically stationary state and examine how the steady-state mean and variance of plankton depends on gamma. Overall we find that advection in the presence of a nonuniform background carrying capacity can lead to very different plankton distributions depending on the time scale ratio gamma. For small gamma the plankton distribution is very similar to the background carrying capacity field and has a mean concentration close to the mean carrying capacity. As gamma increases the plankton concentration is more influenced by the advection processes. In the largest gamma cases there is a homogenization of the plankton concentration and the mean plankton concentration approaches the harmonic mean, <1/K>(-1). We derive asymptotic approximations for the cases of small and large gamma. We also look at the dependence of the power spectra exponent, beta, on gamma where the power spectrum of plankton is proportional to k(-beta). We find that the power spectra exponent closely obeys beta=1+2/gamma as predicted by earlier studies using simple models of chaotic advection.
Collapse
Affiliation(s)
- William J McKiver
- School of Mathematical Sciences and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|