1
|
The Large Dendritic Morphologies in the Antoniadi Crater (Mars) and Their Potential Astrobiological Significance. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mars has held large amounts of running and standing water throughout its history, as evidenced by numerous morphologies attributed to rivers, outflow channels, lakes, and possibly an ocean. This work examines the crater Antoniadi located in the Syrtis Major quadrangle. Some parts of the central area of the crater exhibit giant polygonal mud cracks, typical of endured lake bottom, on top of which a dark, tens of kilometers-long network of dendritic (i.e., arborescent) morphologies emerges, at first resembling the remnant of river networks. The network, which is composed of tabular sub-units, is in relief overlying hardened mud, a puzzling feature that, in principle, could be explained as landscape inversion resulting from stronger erosion of the lake bottom compared to the endured crust of the riverine sediments. However, the polygonal mud cracks have pristine boundaries, which indicate limited erosion. Furthermore, the orientation of part of the network is the opposite of what the flow of water would entail. Further analyses indicate the similarity of the dendrites with controlled diffusion processes rather than with the river network, and the presence of morphologies incompatible with river, alluvial, or underground sapping processes, such as overlapping of branches belonging to different dendrites or growth along fault lines. An alternative explanation worth exploring due to its potential astrobiological importance is that the network is the product of ancient reef-building microbialites on the shallow Antoniadi lake, which enjoyed the fortunate presence of a heat source supplied by the Syrtis Major volcano. The comparison with the terrestrial examples and the dating of the bottom of the crater (formed at 3.8 Ga and subjected to a resurfacing event at 3.6 Ga attributed to the lacustrine drape) contribute to reinforcing (but cannot definitely prove) the scenario of microbialitic origin for dendrites. Thus, the present analysis based on the images available from the orbiters cannot be considered proof of the presence of microbialites in ancient Mars. It is concluded that the Antoniadi crater could be an interesting target for the research of past Martian life in future landing missions.
Collapse
|
2
|
Dundas CM, Becerra P, Byrne S, Chojnacki M, Daubar IJ, Diniega S, Hansen CJ, Herkenhoff KE, Landis ME, McEwen AS, Portyankina G, Valantinas A. Active Mars: A Dynamic World. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006876. [PMID: 35845553 PMCID: PMC9285055 DOI: 10.1029/2021je006876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/15/2023]
Abstract
Mars exhibits diverse surface changes at all latitudes and all seasons. Active processes include impact cratering, aeolian sand and dust transport, a variety of slope processes, changes in polar ices, and diverse effects of seasonal CO2 frost. The extent of surface change has been surprising and indicates that the present climate is capable of reshaping the surface. Activity has important implications for the Amazonian history of Mars: understanding processes is a necessary step before we can understand their implications and variations over time.
Collapse
Affiliation(s)
- Colin M. Dundas
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| | | | - Shane Byrne
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
| | | | - Ingrid J. Daubar
- Department of Earth, Environmental, and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - Serina Diniega
- Jet Propulsion Laboratory/California Institute of TechnologyPasadenaCAUSA
| | | | | | - Margaret E. Landis
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | | - Ganna Portyankina
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | |
Collapse
|
3
|
Dundas CM, Mellon MT, Conway SJ, Gastineau R. Active Boulder Movement at High Martian Latitudes. GEOPHYSICAL RESEARCH LETTERS 2019; 46:5075-5082. [PMID: 31423033 PMCID: PMC6686660 DOI: 10.1029/2019gl082293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Lobate stony landforms occur on steep slopes at high latitudes on Mars. We demonstrate active boulder movement at seven such sites. Submeter-scale boulders frequently move distances of a few meters. The movement is concentrated in the vicinity of the lobate landforms but also occurs on other slopes. This provides evidence for a newly discovered, common style of activity on Mars, which may play an important role in slope degradation. It also opens the possibility that the lobate features are currently forming in the absence of significant volumes of liquid water.
Collapse
Affiliation(s)
- Colin M. Dundas
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| | - Michael T. Mellon
- Center for Astrophysics and Planetary ScienceCornell UniversityIthacaNYUSA
| | - Susan J. Conway
- CNRS UMR6112 Laboratoire de Planétologie et Géodynamique, Université de NantesNantesFrance
| | - Renaldo Gastineau
- CNRS UMR6112 Laboratoire de Planétologie et Géodynamique, Université de NantesNantesFrance
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerreGrenobleFrance
| |
Collapse
|
4
|
Lowe DR, Bishop JL, Loizeau D, Wray JJ, Beyer RA. Deposition of >3.7 Ga clay-rich strata of the Mawrth Vallis Group, Mars, in lacustrine, alluvial, and aeolian environments. GEOLOGICAL SOCIETY OF AMERICA BULLETIN 2019; 132:17-30. [PMID: 33958812 PMCID: PMC8098079 DOI: 10.1130/b35185.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The presence of abundant phyllosilicate minerals in Noachian (>3.7 Ga) rocks on Mars has been taken as evidence that liquid water was stable at or near the surface early in martian history. This study investigates some of these clay-rich strata exposed in crater rim and inverted terrain settings in the Mawrth Vallis region of Mars. In Muara crater the 200-m-thick, clay-rich Mawrth Vallis Group (MVG) is subdivided into five informal units numbered 1 (base) to 5 (top). Unit 1 consists of interbedded sedimentary and volcanic or volcaniclastic units showing weak Fe/Mg-smectite alteration deposited in a range of subaerial depositional settings. Above a major unconformity eroded on Unit 1, the dark-toned sediments of Unit 2 and lower Unit 3 are inferred to represent mainly wind-blown sand. These are widely interlayered with and draped by thin layers of light-toned sediment representing fine suspended-load aeolian silt and clay. These sediments show extensive Fe/Mg-smectite alteration, probably reflecting subaerial weathering. Upper Unit 3 and units 4 and 5 are composed of well-layered, fine-grained sediment dominated by Al-phyllosilicates, kaolinite, and hydrated silica. Deposition occurred in a large lake or arm of a martian sea. In the inverted terrain 100 km to the NE, Unit 4 shows very young slope failures suggesting that the clay-rich sediments today retain a significant component of water ice. The MVG provides evidence for the presence of large, persistent standing bodies of water on early Mars as well as a complex association of flanking shoreline, alluvial, and aeolian systems. Some of the clays, especially the Fe/Mg smectites in upper units 1 and 2 appear to have formed through subaerial weathering whereas the aluminosilicates, kaolinite, and hydrated silica of units 3, 4, and 5 formed mainly through alteration of fine sediment in subaqueous environments.
Collapse
Affiliation(s)
- Donald R. Lowe
- Department of Geological Sciences, Stanford University, Stanford, California 94305-2115, USA
| | - Janice L. Bishop
- SETI & NASA-Ames Research Center, Mountain View, California, USA
| | - Damien Loizeau
- Université Claude Bernard Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France
- Institut d’Astrophysique Spatiale, Université Paris Sud, F-91405 Orsay, France
| | - James J. Wray
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340, USA
| | - Ross A. Beyer
- SETI & NASA-Ames Research Center, Mountain View, California, USA
| |
Collapse
|
5
|
Dundas CM, Bramson AM, Ojha L, Wray JJ, Mellon MT, Byrne S, McEwen AS, Putzig NE, Viola D, Sutton S, Clark E, Holt JW. Exposed subsurface ice sheets in the Martian mid-latitudes. Science 2018; 359:199-201. [DOI: 10.1126/science.aao1619] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/04/2017] [Indexed: 11/02/2022]
Abstract
Thick deposits cover broad regions of the Martian mid-latitudes with a smooth mantle; erosion in these regions creates scarps that expose the internal structure of the mantle. We investigated eight of these locations and found that they expose deposits of water ice that can be >100 meters thick, extending downward from depths as shallow as 1 to 2 meters below the surface. The scarps are actively retreating because of sublimation of the exposed water ice. The ice deposits likely originated as snowfall during Mars’ high-obliquity periods and have now compacted into massive, fractured, and layered ice. We expect the vertical structure of Martian ice-rich deposits to preserve a record of ice deposition and past climate.
Collapse
|
6
|
Wilson EH, Atreya SK, Kaiser RI, Mahaffy PR. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2016; 121:1472-1487. [PMID: 27774369 PMCID: PMC5054826 DOI: 10.1002/2016je005078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 05/31/2023]
Abstract
Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4-). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm-2 s-1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.
Collapse
Affiliation(s)
- Eric H. Wilson
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Sushil K. Atreya
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Ralf I. Kaiser
- Department of ChemistryUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| | | |
Collapse
|
7
|
Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera JPP, Gough RV, Hallsworth JE, Head JW, Hipkin VJ, Kieft TL, McEwen AS, Mellon MT, Mikucki JA, Nicholson WL, Omelon CR, Peterson R, Roden EE, Sherwood Lollar B, Tanaka KL, Viola D, Wray JJ. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). ASTROBIOLOGY 2014; 14:887-968. [PMID: 25401393 DOI: 10.1089/ast.2014.1227] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.
Collapse
Affiliation(s)
- John D Rummel
- 1 Department of Biology, East Carolina University , Greenville, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cooke M, Islam F, McGill G. Basement controls on the scale of giant polygons in Utopia Planitia, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011je003812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
El Maarry MR, Markiewicz WJ, Mellon MT, Goetz W, Dohm JM, Pack A. Crater floor polygons: Desiccation patterns of ancient lakes on Mars? ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003609] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Searls ML, Mellon MT, Cull S, Hansen CJ, Sizemore HG. Seasonal defrosting of the Phoenix landing site. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
A multi-layer approach for the analysis of neighbourhood relations of polygons in remotely acquired images. Pattern Recognit Lett 2010. [DOI: 10.1016/j.patrec.2010.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Mellon MT, Arvidson RE, Sizemore HG, Searls ML, Blaney DL, Cull S, Hecht MH, Heet TL, Keller HU, Lemmon MT, Markiewicz WJ, Ming DW, Morris RV, Pike WT, Zent AP. Ground ice at the Phoenix Landing Site: Stability state and origin. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003417] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Mellon MT, Malin MC, Arvidson RE, Searls ML, Sizemore HG, Heet TL, Lemmon MT, Keller HU, Marshall J. The periglacial landscape at the Phoenix landing site. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003418] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Heet TL, Arvidson RE, Cull SC, Mellon MT, Seelos KD. Geomorphic and geologic settings of the Phoenix Lander mission landing site. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003416] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Leverington DW. Reconciling channel formation processes with the nature of elevated outflow systems at Ophir and Aurorae Plana, Mars. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003398] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, Dejong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP. H2O at the Phoenix landing site. Science 2009; 325:58-61. [PMID: 19574383 DOI: 10.1126/science.1172339] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Phoenix mission investigated patterned ground and weather in the northern arctic region of Mars for 5 months starting 25 May 2008 (solar longitude between 76.5 degrees and 148 degrees ). A shallow ice table was uncovered by the robotic arm in the center and edge of a nearby polygon at depths of 5 to 18 centimeters. In late summer, snowfall and frost blanketed the surface at night; H(2)O ice and vapor constantly interacted with the soil. The soil was alkaline (pH = 7.7) and contained CaCO(3), aqueous minerals, and salts up to several weight percent in the indurated surface soil. Their formation likely required the presence of water.
Collapse
Affiliation(s)
- P H Smith
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Levy J, Head J, Marchant D. Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003273] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Mellon MT, Boynton WV, Feldman WC, Arvidson RE, Titus TN, Bandfield JL, Putzig NE, Sizemore HG. A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003067] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|