High-pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle.
Proc Natl Acad Sci U S A 2020;
117:18285-18291. [PMID:
32690695 PMCID:
PMC7414062 DOI:
10.1073/pnas.2004347117]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Petrologic studies suggest that carbonate-rich melts are present in the Earth’s upper mantle and play an important role in the deep carbon cycle. However, seismic detection of these melts is difficult due to the lack of understanding of the elastic properties of carbonate melts. Here we determined the sound velocity and density of dolomite melt at upper mantle conditions using high-pressure experiments and theoretical simulations. The calculated velocities of carbonate melt-bearing mantle using these new elasticity data were compared with global seismic observations. The result suggests that ∼0.05% carbonate-rich melt can be pervasively present in the deep upper mantle, implying a global average mantle carbon concentration of 80-140 ppm.
Deeply subducted carbonates likely cause low-degree melting of the upper mantle and thus play an important role in the deep carbon cycle. However, direct seismic detection of carbonate-induced partial melts in the Earth’s interior is hindered by our poor knowledge on the elastic properties of carbonate melts. Here we report the first experimentally determined sound velocity and density data on dolomite melt up to 5.9 GPa and 2046 K by in-situ ultrasonic and sink-float techniques, respectively, as well as first-principles molecular dynamics simulations of dolomite melt up to 16 GPa and 3000 K. Using our new elasticity data, the calculated VP/VS ratio of the deep upper mantle (∼180–330 km) with a small amount of carbonate-rich melt provides a natural explanation for the elevated VP/VS ratio of the upper mantle from global seismic observations, supporting the pervasive presence of a low-degree carbonate-rich partial melt (∼0.05%) that is consistent with the volatile-induced or redox-regulated initial melting in the upper mantle as argued by petrologic studies. This carbonate-rich partial melt region implies a global average carbon (C) concentration of 80–140 ppm. by weight in the deep upper mantle source region, consistent with the mantle carbon content determined from geochemical studies.
Collapse