1
|
Zhu Y, Ji Y, Liu L, Zhu W, Qu R, Xie C, Faheem H, Yoshioka S, Ding L. Heterogeneous slab thermal dehydration driving warm subduction zone earthquakes. Sci Rep 2023; 13:21157. [PMID: 38036715 PMCID: PMC10689746 DOI: 10.1038/s41598-023-48498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023] Open
Abstract
Changing thermal regime is one of the key mechanisms driving seismogenic behaviors at cold megathrusts, but it is difficult to interpret warm subduction zones such as Vanuatu for the temperatures are higher than that accommodates shallow brittle failures. We construct a 3-D thermomechanical model to clarify the thermal structure that controls tectonic seismicity in Vanuatu and predict a warm circumstance associated with abundant seismicity. Results reveal a heterogeneous slab ranging from 300 °C to over 900 °C from the Moho to subvolcanic depth. The subduction seismicity corresponds well to the plate interface where dynamic thermal dehydration is focused. The transformation from hydrated basalts to eclogites along the slab facilitates the occurrence of intense earthquakes and slips. Multistage mineralogical metamorphism affects the dynamic stability of megathrusts and favors the generation of active interplate large events. Therefore, slab thermal dehydration plays a greater role than slab temperature condition in influencing the subduction earthquake distribution in warm subduction systems.
Collapse
Affiliation(s)
- Ye Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingfeng Ji
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lijun Liu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Weiling Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Qu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaodi Xie
- Geophysics Department, School of Earth Sciences, Yunnan University, Kunming, 650500, China
| | - Haris Faheem
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shoichi Yoshioka
- Research Center for Urban Safety and Security, Kobe University, Kobe, Japan
- Department of Planetology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Lin Ding
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Behr WM, Bürgmann R. What's down there? The structures, materials and environment of deep-seated slow slip and tremor. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200218. [PMID: 33517877 PMCID: PMC7898123 DOI: 10.1098/rsta.2020.0218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 05/26/2023]
Abstract
Deep-seated slow slip and tremor (SST), including slow slip events, episodic tremor and slip, and low-frequency earthquakes, occur downdip of the seismogenic zone of numerous subduction megathrusts and plate boundary strike-slip faults. These events represent a fascinating and perplexing mode of fault failure that has greatly broadened our view of earthquake dynamics. In this contribution, we review constraints on SST deformation processes from both geophysical observations of active subduction zones and geological observations of exhumed field analogues. We first provide an overview of what has been learned about the environment, kinematics and dynamics of SST from geodetic and seismologic data. We then describe the materials, deformation mechanisms, and metamorphic and fluid pressure conditions that characterize exhumed rocks from SST source depths. Both the geophysical and geological records strongly suggest the importance of a fluid-rich and high fluid pressure habitat for the SST source region. Additionally, transient deformation features preserved in the rock record, involving combined frictional-viscous shear in regions of mixed lithology and near-lithostatic fluid pressures, may scale with the tremor component of SST. While several open questions remain, it is clear that improved constraints on the materials, environment, structure, and conditions of the plate interface from geophysical imaging and geologic observations will enhance model representations of the boundary conditions and geometry of the SST deformation process. This article is part of a discussion meeting issue 'Understanding earthquakes using the geological record'.
Collapse
Affiliation(s)
- Whitney M. Behr
- Geological Institute, Department of Earth Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Roland Bürgmann
- Department of Earth and Planetary Science and Berkeley Seismological Laboratory, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Nakajima J, Hasegawa A. Tremor activity inhibited by well-drained conditions above a megathrust. Nat Commun 2016; 7:13863. [PMID: 27991588 PMCID: PMC5187422 DOI: 10.1038/ncomms13863] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/04/2016] [Indexed: 11/09/2022] Open
Abstract
Tremor occurs on megathrusts under conditions of near-lithostatic pore-fluid pressures and extremely weakened shear strengths. Although metamorphic reactions in the slab liberate large amounts of fluids, the mechanism for enhancing pore-fluid pressures along the megathrust to near-lithostatic values remains poorly understood. Here we show anti-correlation between low-frequency earthquake (LFE) activity and properties that are markers of the degree of metamorphism above the megathrust, whereby LFEs occur beneath the unmetamorphosed overlying plate but are rare or limited below portions that are metamorphosed. The extent of metamorphism in the overlying plate is likely controlled by along-strike contrasts in permeability. Undrained conditions are required for pore-fluid pressures to be enhanced to near-lithostatic values and for shear strength to reduce sufficiently for LFE generation, whereas well-drained conditions reduce pore-fluid pressures at the megathrust and LFEs no longer occur at the somewhat strengthened megathrust. Our observations suggest that undrained conditions are a key factor for the genesis of LFEs.
Collapse
Affiliation(s)
- Junichi Nakajima
- Department of Earth and Planetary Sciences, School of Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akira Hasegawa
- Research Centre for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, 6-6 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Abstract
AbstractA microseismically active layer of underthrust sediments is commonly inferred along subduction thrust interfaces. The exhumed Chrystalls Beach Complex, in the Otago Schist, New Zealand, may be analogous to an actively deforming underthrust rock assemblage. The complex contains asymmetric competent lenses of sandstone, chert and basalt enclosed in a cleaved mudstone matrix. Continuous fabrics such as folds, boudins and asymmetric phacoids formed by distributed cataclasis and dissolution–precipitation creep. Discontinuous deformation is evident in an extensive fault-fracture mesh involving mutually cross-cutting subvertical extension veins and subhorizontal slickenfibre shear surfaces.The Hikurangi margin provides an example of along-strike variations in seismic style, possibly related to heterogeneous fluid-pressure state and interface geology. In both the ancient and active subduction-related shear zone, fluid-pressure state appears to be a critical control on frictional failure, which primarily occurs on weak, fluid-overpressured discontinuities. Continuous, aseismic deformation occurs where other mineral deformation mechanisms, such as dissolution–precipitation creep, are preferred. The geometry and composition of the underthrust rock assemblage appear to be first-order controls on megathrust fluid-pressure distribution, bulk rheology and dominant deformation mechanism, and thus may be significant controls on megathrust seismic style.
Collapse
Affiliation(s)
- Åke Fagereng
- Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New Zealand (e-mail: )
| |
Collapse
|
6
|
Outerbridge KC, Dixon TH, Schwartz SY, Walter JI, Protti M, Gonzalez V, Biggs J, Thorwart M, Rabbel W. A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jb006845] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|