1
|
Xia M, Wang T, Wang Z, Chen Y, Peng X, Huo Y, Wang W, Yuan Q, Jiang Y, Guo H, Lau C, Leung K, Yu A, Lee S. Pollution-Derived Br 2 Boosts Oxidation Power of the Coastal Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12055-12065. [PMID: 35948027 DOI: 10.1021/acs.est.2c02434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bromine atom (Br•) has been known to destroy ozone (O3) and accelerate the deposition of toxic mercury (Hg). However, its abundance and sources outside the polar regions are not well-known. Here, we report significant levels of molecular bromine (Br2)─a producer of Br•─observed at a coastal site in Hong Kong, with an average noontime mixing ratio of 5 ppt. Given the short lifetime of Br2 (∼1 min at noon), this finding reveals a large Br2 daytime source. On the basis of laboratory and field evidence, we show that the observed daytime Br2 is generated by the photodissociation of particulate nitrate (NO3-) and that the reactive uptake of dinitrogen pentoxide (N2O5) on aerosols is an important nighttime source. Model-calculated Br• concentrations are comparable with that of the OH radical─the primary oxidant in the troposphere, accounting for 24% of the oxidation of isoprene, a 13% increase in net O3 production, and a nearly 10-fold increase in the production rate of toxic HgII. Our findings reveal that reactive bromines play a larger role in the atmospheric chemistry and air quality of polluted coastal and maritime areas than previously thought. Our results also suggest that tightening the control of emissions of two conventional pollutants (NOx and SO2)─thereby decreasing the levels of nitrate and aerosol acidity─would alleviate halogen radical production and its adverse impact on air quality.
Collapse
Affiliation(s)
- Men Xia
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Zhe Wang
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Yi Chen
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Xiang Peng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- China National Environmental Monitoring Centre, Beijing 100020, China
| | - Yunxi Huo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Weihao Wang
- Hangzhou PuYu Technology Development Co Ltd, Hangzhou 311305, Zhejiang, China
| | - Qi Yuan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Yifan Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Chiho Lau
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Kenneth Leung
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Alfred Yu
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Abstract
Recycling of reactive iodine from heterogeneous processes on sea-salt aerosol was hypothesized over two decades ago to play an important role in the atmospheric cleansing capacity. However, the understanding of this mechanism has been limited to laboratory studies and has not been confirmed in the atmosphere until now. We present atmospheric measurement of gas-phase iodine interhalogen species and show that their production via heterogeneous processing on marine aerosols is remarkably fast. These observations reveal that the atmospheric recycling of atomic iodine through photolysis of iodine interhalogen species is more efficient than previously thought, which is ultimately expected to lead to higher ozone loss and faster new particle formation in the marine environment. Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICl] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICl and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICl and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.
Collapse
|
3
|
Zhang Y, Bing H, Song R. Mechanistic and kinetic study on the reaction of the·Cl‐initiated atmospheric degradation of CFCl
2
O
2. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - He Bing
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules Chengdu Normal University Chengdu China
| | - Ruojing Song
- Key Laboratory of Photoinduced Functional Materials Mianyang Normal University Mianyang China
| |
Collapse
|
4
|
Abstract
Chlorine atoms play a key role in the oxidative potential of the atmosphere and biogeochemical cycling of selected elements. This study provides a decadal analysis (2010−2019) of chloride ions in PM2.5 particles in the city of Montreal, where these are most concentrated systematically in the winter (up to 1.6 µg/m3). We also herein present the measurement of photolabile chlorine, which includes chlorine-containing compounds (e.g., Cl2, HOCl, ClNO2, ClNO3, and BrCl) that release chlorine atoms upon interaction with radiation, in urban Montreal, Canada using Cl2-RPGE (Cl2 Reactive Phase Gas Extraction) tubes and quantifying the chlorinated product by GC-MS. Photolabile chlorine in urban Montreal was measured during a discontinuous period primarily in summer 2018 and winter 2019 with a time resolution of 30 min, with concentrations ranging from 3 to 545 ng/m3 expressed as Cl2. The reported values are considered lower limits, as compounds such as HOCl and ClNO2 can only be partially converted in the current setup. The largest peak of gaseous photolabile chlorine occurred in the winter, when significant sources of anthropogenic salt are used in snow removal in the city. This coincides with observed chloride ion measurements in airborne particles, implying that anthropogenic salt addition produces photoactive chlorine. The maximum chlorine signal was consistently obtained during the daytime, which is in accordance with the tropospheric radiation profile. Complementary photochemistry laboratory experiments indicated that upon tropospheric radiation (340 ≤ λ ≤ 400 nm; UVA), an increase (20–100%) was observed, confirming the formation of Cl atoms from photolabile chlorine compounds. Thus, this portable technique is adequate for Cl atoms and photolabile chlorine-containing compounds upon photolysis using UVA lamps. High-resolution S/TEM and energy-dispersive X-ray spectroscopy (EDS) were used to evaluate collected particle morphology and composition. The behavior of complementary pollutants (O3, CO, PM2.5, and NOx) was also briefly discussed. We herein discuss the measurement of photolabile halogens within a northern urban metropolitan environment and the impact of anthropogenic sources on chlorine concentrations.
Collapse
|
5
|
Figueiredo A, Strekowski RS, Bosland L, Durand A, Wortham H. Photolytic degradation of molecular iodine adsorbed on model SiO 2 particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137951. [PMID: 32392691 DOI: 10.1016/j.scitotenv.2020.137951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
A molecular derivatization method followed by gas chromatographic separation coupled with mass spectrometric detection was used to study photolytic degradation of I2 adsorbed on solid SiO2 particles. This heterogeneous photodegradation of I2 is studied at ambient temperature in synthetic air to better understand I2 atmospheric dispersion and environmental fate. The obtained laboratory results show a considerably enhanced atmospheric lifetime of molecular iodine adsorbed on solid media. The heterogeneous atmospheric residence time (τ) of I2 is calculated to be τ ≈ 187 min, i.e., τ ≈ 3 h. The obtained heterogeneous lifetime of I2 is shown to be considerably longer than its destruction by its principal atmospheric sink, namely, photolysis. The observed enhanced atmospheric lifetime of I2 on heterogeneous media will likely have direct consequences on the atmospheric transport of I2 that influences the toxicity or the oxidative capacity of the atmosphere.
Collapse
Affiliation(s)
- A Figueiredo
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES/SAG/LETR, Cadarache, France
| | | | - L Bosland
- Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES/SAG/LETR, Cadarache, France
| | - A Durand
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | - H Wortham
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| |
Collapse
|
6
|
Kaipara R, Rajakumar B. Photooxidation Reactions of Ethyl 2-Methylpropionate (E2MP) and Ethyl 2,2-Dimethylpropionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study. J Phys Chem A 2020; 124:2768-2784. [PMID: 32207979 DOI: 10.1021/acs.jpca.0c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relative rate (RR) technique was used for the measurement of OH-initiated photooxidation reactions of ethyl 2-methylpropionate (E2MP) and ethyl 2,2-dimethylpropionate (E22DMP) in the temperature range of 268-363 K at 760 Torr. In addition to this, the thermodynamic and kinetic parameters for the title reactions were theoretically investigated using CCSD(T)/cc-pVTZ//M06-2X/6-311++G(2d,2p) level of theory in the temperature range of 200-400 K using canonical variational transition state theory (CVT) in combination with small curvature tunneling (SCT) method. The rate coefficients at (298 ± 2) K were measured to be kE2MP+OH = (2.71 ± 0.79) × 10-12 cm3 molecule-1 s-1 and kE22DMP+OH = (2.58 ± 0.80) × 10-12 cm3 molecule-1 s-1. The degradation mechanisms for the title reactions were investigated in the presence of O2 using gas chromatography with mass spectrometry (GC-MS) and gas chromatography with infrared spectroscopy (GC-IR). From the recognized products, the possible product degradation mechanisms were predicted. In addition to this, the atmospheric lifetimes (ALs), lifetime-corrected radiative forcing (RF), global warming potential (GWPs) and photochemical ozone creation potentials (POCPs) were calculated to further understand the environmental impact of these molecules on the Earth's troposphere.
Collapse
Affiliation(s)
- Revathy Kaipara
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - B Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
7
|
Kaipara R, Rajakumar B. Cl-Initiated Photo-oxidation Studies of Methyl Valerate and Methyl Isovalerate under Tropospherically Relevant Conditions. J Phys Chem A 2020; 124:2515-2529. [DOI: 10.1021/acs.jpca.9b10740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Revathy Kaipara
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - B. Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Meng M, Sun RY, Liu HW, Yu B, Yin YG, Hu LG, Chen JB, Shi JB, Jiang GB. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121379. [PMID: 31611019 DOI: 10.1016/j.jhazmat.2019.121379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) speciation and isotopic compositions in a large-scale food web and seawater from Chinese Bohai Sea were analyzed to investigate methylmercury (MeHg) sources and Hg cycling. The biota showed ∼5‰ variation in mass dependent fractionation (MDF, -4.57 to 0.53‰ in δ202Hg) and mostly positive odd-isotope mass independent fractionation (odd-MIF, -0.01 to 1.21‰ in Δ199Hg). Both MDF and odd-MIF in coastal biota showed significant correlations with their trophic levels and MeHg fractions, likely reflecting a preferential trophic transfer of MeHg with higher δ202Hg and Δ199Hg than inorganic Hg. The MDF and odd-MIF of biota were largely affected by their feeding habits and living territories, and MeHg in pelagic food web was more photodegraded than in coastal food web (21-31% vs. 9-11%). From the Hg isotope signatures of pelagic biota and extrapolated coastal MeHg, we suggest that MeHg in the food webs was likely derived from sediments. Interestingly, we observed complementary even-MIF (mainly negative Δ200Hg of -0.36 to 0.08‰ and positive Δ204Hg of -0.05 to 0.82‰) in the biota and a significant linear slope of -0.5 for Δ200Hg/Δ204Hg. This leads us to speculate that atmospheric Hg0 is an important source to bioaccumulated MeHg, although the exact source-receptor relationships need further investigation.
Collapse
Affiliation(s)
- Mei Meng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruo-Yu Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Hong-Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiu-Bin Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
9
|
Hui AO, Okumura M, Sander SP. Temperature Dependence of the Reaction of Chlorine Atoms with CH 3OH and CH 3CHO. J Phys Chem A 2019; 123:4964-4972. [PMID: 31088062 DOI: 10.1021/acs.jpca.9b00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rate constants of the reactions Cl + CH3OH → CH2OH + HCl ( k1) and Cl + CH3CHO → CH3C(O) + HCl ( k3) were measured at 100 Torr over the temperature range 230.3-297.1 K. Radical chemistry was initiated by pulsed laser photolysis of Cl2 in mixtures of CH3OH and CH3CHO in a flow reactor. Heterodyne near-IR wavelength modulation spectroscopy was used to directly detect HO2 produced from the subsequent reaction of CH2OH with O2 in real time to determine the rate of reaction of Cl with CH3OH. The rate of Cl + CH3CHO was measured relative to that of the Cl + CH3OH reaction. Secondary chemistry, including that of the adducts HO2·CH3OH and HO2·CH3CHO, was taken into account. The Arrhenius expressions were found to be k1( T) = 5.02-1.5+1.8 × 10-11 exp[(20 ± 88)/ T] cm3 molecule-1 s-1 and k3( T) = 6.38-2.0+2.4 × 10-11 exp[(56 ± 90)/ T] cm3 molecule-1 s-1 (2σ uncertainties). The average values of the rate constants over this temperature range were k1 = (5.45 ± 0.37) × 10-11 cm3 molecule-1 s-1 and k3 = (8.00 ± 1.27) × 10-11 cm3 molecule-1 s-1 (2σ uncertainties), consistent with current literature values.
Collapse
Affiliation(s)
- Aileen O Hui
- Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Physics , California Institute of Technology , M/S 127-72, 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - Mitchio Okumura
- Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Physics , California Institute of Technology , M/S 127-72, 1200 East California Boulevard , Pasadena , California 91125 , United States
| | - Stanley P Sander
- Jet Propulsion Laboratory , California Institute of Technology , 4800 Oak Grove Drive , Pasadena , California 91109 , United States
| |
Collapse
|
10
|
Sakamoto Y, Zhou J, Kohno N, Nakagawa M, Hirokawa J, Kajii Y. Kinetics Study of OH Uptake onto Deliquesced NaCl Particles by Combining Laser Photolysis and Laser-Induced Fluorescence. J Phys Chem Lett 2018; 9:4115-4119. [PMID: 29979879 DOI: 10.1021/acs.jpclett.8b01725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the role of hydroxyl radical (OH) uptake onto sea-salt particles as a daytime chlorine source, affecting the chemical processes in the marine boundary layer, its uptake coefficient has not yet been confirmed by direct measurement methods. This study reports the application of a combination technique of laser flash photolysis generation and laser-induced fluorescence detection for the direct kinetic measurement of OH uptake onto deliquesced NaCl particles. The uptake coefficient was not constant and inversely depended on the initial OH concentration, indicating that the first uptake step is Langmuir-type adsorption. The resistance model, including surface processes, well reproduced the observed uptake coefficient. The model predicted an uptake coefficient for the atmospheric relevant OH concentration within the range from 0.77 to 0.95. Such values may lead to emissions of Cl2 higher than those predicted in previous studies based on other values. Hence, the proposed value may provide more reliable estimations of ozone formation, oxidation of volatile organic compounds, secondary organic aerosol formation, and lifetime of methane and elemental mercury in the marine boundary layer.
Collapse
Affiliation(s)
- Yosuke Sakamoto
- Center for Regional Environmental Research , National Institute for Environmental Studies , Ibaraki 305-8506 , Japan
| | | | | | | | - Jun Hirokawa
- Faculty of Environmental Earth Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Yoshizumi Kajii
- Center for Regional Environmental Research , National Institute for Environmental Studies , Ibaraki 305-8506 , Japan
| |
Collapse
|
11
|
Faxon CB, Dhulipala SV, Allen DT, Hildebrandt Ruiz L. Heterogeneous production of Cl2
from particulate chloride: Effects of composition and relative humidity. AIChE J 2018. [DOI: 10.1002/aic.16204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cameron B. Faxon
- McKetta Dept. of Chemical Engineering, The University of Texas at Austin; M/C 27100, 10100 Burnet Road, Austin TX 78758
| | - Surya Venkatesh Dhulipala
- McKetta Dept. of Chemical Engineering, The University of Texas at Austin; M/C 27100, 10100 Burnet Road, Austin TX 78758
| | - David T. Allen
- McKetta Dept. of Chemical Engineering, The University of Texas at Austin; M/C 27100, 10100 Burnet Road, Austin TX 78758
| | - Lea Hildebrandt Ruiz
- McKetta Dept. of Chemical Engineering, The University of Texas at Austin; M/C 27100, 10100 Burnet Road, Austin TX 78758
| |
Collapse
|
12
|
Muñiz-Unamunzaga M, Borge R, Sarwar G, Gantt B, de la Paz D, Cuevas CA, Saiz-Lopez A. The influence of ocean halogen and sulfur emissions in the air quality of a coastal megacity: The case of Los Angeles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1536-1545. [PMID: 28666531 PMCID: PMC6724205 DOI: 10.1016/j.scitotenv.2017.06.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/23/2017] [Accepted: 06/12/2017] [Indexed: 05/21/2023]
Abstract
The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens (Cl, Br and I) and dimethyl sulfide (DMS) on the air quality of a large coastal city through a set of high-resolution (4-km) air quality simulations for the urban area of Los Angeles, US, using the Community Multiscale Air Quality (CMAQ model). The results indicate that marine halogen emissions decrease ozone and nitrogen dioxide levels up to 5ppbv and 2.5ppbv, respectively, in the city of Los Angeles. Previous studies suggested that the inclusion of chlorine in air quality models leads to the generation of ozone in urban areas through photolysis of nitryl chloride (ClNO2). However, we find that when considering the chemistry of Cl, Br and I together the net effect is a reduction of surface ozone concentrations. Furthermore, combined ocean emissions of halogens and DMS cause substantial changes in the levels of key urban atmospheric oxidants such as OH, HO2 and NO3, and in the composition and mass of fine particles. Although the levels of ozone, NO3 and HOx are reduced, we find a 10% increase in secondary organic aerosol (SOA) mean concentration, attributed to the increase in aerosol acidity and sulfate aerosol formation when combining DMS and bromine. Therefore, this new pathway for enhanced SOA formation may potentially help with current model under predictions of urban SOA. Although further observations and research are needed to establish these preliminary conclusions, this first city-scale investigation suggests that the inclusion of oceanic halogens and DMS in air quality models may improve regional air quality predictions over coastal cities around the world.
Collapse
Affiliation(s)
- Maria Muñiz-Unamunzaga
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Rafael Borge
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid (UPM), Madrid, Spain
| | - Golam Sarwar
- National Exposure Research Laboratory, Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Brett Gantt
- National Exposure Research Laboratory, Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - David de la Paz
- Environmental Modelling Laboratory, Department of Chemical & Environmental Engineering, Technical University of Madrid (UPM), Madrid, Spain
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain.
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain.
| |
Collapse
|
13
|
Liu X, Qu H, Huey LG, Wang Y, Sjostedt S, Zeng L, Lu K, Wu Y, Hu M, Shao M, Zhu T, Zhang Y. High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9588-9595. [PMID: 28806070 DOI: 10.1021/acs.est.7b03039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Molecular chlorine (Cl2) and nitryl chloride (ClNO2) concentrations were measured using chemical ionization mass spectrometry at a rural site over the North China Plain during June 2014. High levels of daytime Cl2 up to ∼450 pptv were observed. The average diurnal Cl2 mixing ratios showed a maximum around noon at ∼100 pptv. ClNO2 exhibited a strong diurnal variation with early morning maxima reaching ppbv levels and afternoon minima sustained above 60 pptv. A moderate correlation (R2 = 0.31) between Cl2 and sulfur dioxide was observed, perhaps indicating a role for power plant emissions in the generation of the observed chlorine. We also observed a strong correlation (R2 = 0.83) between daytime (10:00-20:00) Cl2 and ClNO2, which implies that both of them were formed from a similar mechanism. In addition, Cl2 production is likely associated with a photochemical mechanism as Cl2 concentrations varied with ozone (O3) levels. The impact of Cl2 and ClNO2 as Cl atom sources is investigated using a photochemical box model. We estimated that the produced Cl atoms oxidized slightly more alkanes than OH radicals and enhanced the daily concentrations of peroxy radicals by 15% and the O3 production rate by 19%.
Collapse
Affiliation(s)
- Xiaoxi Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Hang Qu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - L Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Steven Sjostedt
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder , Boulder, Colorado 80309, United States
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration , Boulder, Colorado 80305, United States
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Yusheng Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Min Shao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
14
|
Zhang S, Sun J, Cao H, Qiao Q, He M. Computational study on the mechanism and kinetics of Cl-initiated oxidation of ethyl acrylate. Struct Chem 2017. [DOI: 10.1007/s11224-017-0967-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Inland Concentrations of Cl2 and ClNO2 in Southeast Texas Suggest Chlorine Chemistry Significantly Contributes to Atmospheric Reactivity. ATMOSPHERE 2015. [DOI: 10.3390/atmos6101487] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Ifang S, Benter T, Barnes I. Reactions of Cl atoms with alkyl esters: kinetic, mechanism and atmospheric implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4820-4832. [PMID: 24809490 DOI: 10.1007/s11356-014-2913-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Rate coefficients have been measured for the reaction of Cl atoms with a series of alkyl esters at 298 ± 2 K and atmospheric pressure in a large volume photoreactor using the relative kinetic technique. The kinetic data have been used in conjunction with other literature studies on the reactions of Cl atoms with esters to revise the existing values for ester substituent factors in a structure activity relationship (SAR) for Cl reactions. Product studies are reported for the reactions of Cl atoms with isopropyl ethanoate and methyl-2-methyl-propanoate under NO x -free conditions. These studies highlight the types of products that can be expected when oxidation occurs at R groups on the acyl (-C(O)OR) and oxy (RC(O)O-) sides of the ester functionality where R is a straight or branched chain alkyl entity. Possible atmospheric repercussions of the atmospheric chemistry of esters are considered.
Collapse
Affiliation(s)
- Stefanie Ifang
- FB C - Department of Physical Chemistry, University of Wuppertal, Gauss Strasse 20, 42119, Wuppertal, Germany
| | | | | |
Collapse
|
17
|
Simpson WR, Brown SS, Saiz-Lopez A, Thornton JA, Glasow RV. Tropospheric halogen chemistry: sources, cycling, and impacts. Chem Rev 2015; 115:4035-62. [PMID: 25763598 PMCID: PMC4469175 DOI: 10.1021/cr5006638] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William R Simpson
- †Department of Chemistry and Biochemistry and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Steven S Brown
- ‡NOAA ESRL Chemical Sciences Division, Boulder, Colorado 80305-3337, United States
| | - Alfonso Saiz-Lopez
- ¶Atmospheric Chemistry and Climate Group, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
| | - Joel A Thornton
- §Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195-1640, United States
| | - Roland von Glasow
- ∥Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, U.K
| |
Collapse
|
18
|
Al-Abadleh HA. Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Adv 2015. [DOI: 10.1039/c5ra03132j] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The current state of knowledge and future research directions of the bulk and surface chemistry of iron relevant to atmospheric surfaces are reviewed.
Collapse
Affiliation(s)
- Hind A. Al-Abadleh
- Department of Chemistry and Biochemistry
- Wilfrid Laurier University
- Waterloo
- Canada
| |
Collapse
|
19
|
Riedel TP, Bertram TH, Crisp TA, Williams EJ, Lerner BM, Vlasenko A, Li SM, Gilman J, de Gouw J, Bon DM, Wagner NL, Brown SS, Thornton JA. Nitryl chloride and molecular chlorine in the coastal marine boundary layer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10463-70. [PMID: 22443276 DOI: 10.1021/es204632r] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The magnitude and sources of chlorine atoms in marine air remain highly uncertain but have potentially important consequences for air quality in polluted coastal regions. We made continuous measurements of ambient ClNO(2) and Cl(2) concentrations from May 15 to June 8 aboard the Research Vessel Atlantis during the CalNex 2010 field study. In the Los Angeles region, ClNO(2) was more ubiquitous than Cl(2) during most nights of the study period. ClNO(2) and Cl(2) ranged from detection limits at midday to campaign maximum values at night reaching 2100 and 200 pptv, respectively. The maxima were observed in Santa Monica Bay when sampling the Los Angeles urban plume. Cl(2) at times appeared well correlated with ClNO(2), but at other times, there was little to no correlation implying distinct and varying sources. Well-confined Cl(2) plumes were observed, largely independent of ClNO(2), providing support for localized industrial emissions of reactive chlorine. Observations of ClNO(2), Cl(2), and HCl are used to constrain a simple box model that predicts their relative importance as chlorine atom sources in the polluted marine boundary layer. In contrast to the emphasis in previous studies, ClNO(2) and HCl are dominant primary chlorine atom sources for the Los Angeles basin.
Collapse
Affiliation(s)
- Theran P Riedel
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fiore AM, Naik V, Spracklen DV, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith PJ, Cionni I, Collins WJ, Dalsøren S, Eyring V, Folberth GA, Ginoux P, Horowitz LW, Josse B, Lamarque JF, MacKenzie IA, Nagashima T, O'Connor FM, Righi M, Rumbold ST, Shindell DT, Skeie RB, Sudo K, Szopa S, Takemura T, Zeng G. Global air quality and climate. Chem Soc Rev 2012; 41:6663-83. [PMID: 22868337 DOI: 10.1039/c2cs35095e] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.
Collapse
Affiliation(s)
- Arlene M Fiore
- Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liao J, Huey LG, Tanner DJ, Flocke FM, Orlando JJ, Neuman JA, Nowak JB, Weinheimer AJ, Hall SR, Smith JN, Fried A, Staebler RM, Wang Y, Koo JH, Cantrell CA, Weibring P, Walega J, Knapp DJ, Shepson PB, Stephens CR. Observations of inorganic bromine (HOBr, BrO, and Br2) speciation at Barrow, Alaska, in spring 2009. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016641] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Kundel M, Huang RJ, Thorenz UR, Bosle J, Mann MJD, Ries M, Hoffmann T. Application of time-of-flight aerosol mass spectrometry for the online measurement of gaseous molecular iodine. Anal Chem 2012; 84:1439-45. [PMID: 22243548 DOI: 10.1021/ac202527a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here we present a new application of a time-of-flight aerosol mass spectrometer (TOF-AMS) for the measurement of atmospheric trace gases in real-time. Usually, TOF-AMS instruments are not sensitive to gas-phase species due to the aerodynamic particle focusing inlet system which reduces the gas phase species by a factor of about 10(7) relative to the particle phase. This efficient removal of the gas phase and the resulting high relative enrichment of particles is one reason for the very high sensitivity of TOF-AMS instruments for particle phase compounds (detection limits in the sub-μg/m(3)-range for online measurements with 1 min integration time), which allows application of the instruments even under clean atmospheric conditions. Here we use artificially generated particles as sampling probes to transfer selected atmospheric trace gases into the particle phase before entering the AMS (gaseous compound trapping in artificially generated particles-AMS, GTRAP-AMS). The sampling probe particles are mixed with the gaseous analytes upstream of the TOF-AMS in a 0.5 L flow tube. As an exemplary application of the method, the measurement of trace levels of gaseous molecular iodine is demonstrated. α-Cyclodextrin (α-CD/NH(4)Br) particles are used as selective sampling probes to transfer molecular iodine into the AMS. A detection limit in the subparts-per-billion (sub-ppb) range was achieved. The method was compared to a recently developed off-line method that combines denuder sampling of gaseous I(2) and gas chromatography/mass spectrometry (GC/MS) analysis. To demonstrate the usability of the method, temporally resolved I(2) emission profiles from a brown algae species (Laminaria saccharina) under exposure of ambient ozone levels were investigated. Total I(2) release rates of 36.5 pmol min(-1) grams fresh weight (gFW)(-1) at 100 pbb O(3) and 33.4 pmol min(-1) gFW(-1) at 50 ppb O(3) were obtained within the first hour of ozone exposure.
Collapse
Affiliation(s)
- Michael Kundel
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Saiz-Lopez A, Plane JMC, Baker AR, Carpenter LJ, von Glasow R, Gómez Martín JC, McFiggans G, Saunders RW. Atmospheric Chemistry of Iodine. Chem Rev 2011; 112:1773-804. [DOI: 10.1021/cr200029u] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alfonso Saiz-Lopez
- Laboratory for Atmospheric and Climate Science (CIAC), CSIC, Toledo, Spain
| | - John M. C. Plane
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Alex R. Baker
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Lucy J. Carpenter
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Roland von Glasow
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | - Gordon McFiggans
- School of Earth, Atmospheric & Environmental Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom
| | | |
Collapse
|
25
|
Smyth PPA, Burns R, Huang RJ, Hoffman T, Mullan K, Graham U, Seitz K, Platt U, O'Dowd C. Does iodine gas released from seaweed contribute to dietary iodine intake? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2011; 33:389-397. [PMID: 21431377 DOI: 10.1007/s10653-011-9384-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Thyroid hormone levels sufficient for brain development and normal metabolism require a minimal supply of iodine, mainly dietary. Living near the sea may confer advantages for iodine intake. Iodine (I(2)) gas released from seaweeds may, through respiration, supply a significant fraction of daily iodine requirements. Gaseous iodine released over seaweed beds was measured by a new gas chromatography-mass spectrometry (GC-MS)-based method and iodine intake assessed by measuring urinary iodine (UI) excretion. Urine samples were obtained from female schoolchildren living in coastal seaweed rich and low seaweed abundance and inland areas of Ireland. Median I(2) ranged 154-905 pg/L (daytime downwind), with higher values (~1,287 pg/L) on still nights, 1,145-3,132 pg/L (over seaweed). A rough estimate of daily gaseous iodine intake in coastal areas, based upon an arbitrary respiration of 10,000L, ranged from 1 to 20 μg/day. Despite this relatively low potential I(2) intake, UI in populations living near a seaweed hotspot were much higher than in lower abundance seaweed coastal or inland areas (158, 71 and 58 μg/L, respectively). Higher values >150 μg/L were observed in 45.6% of (seaweed rich), 3.6% (lower seaweed), 2.3% (inland)) supporting the hypothesis that iodine intake in coastal regions may be dependent on seaweed abundance rather than proximity to the sea. The findings do not exclude the possibility of a significant role for iodine inhalation in influencing iodine status. Despite lacking iodized salt, coastal communities in seaweed-rich areas can maintain an adequate iodine supply. This observation brings new meaning to the expression "Sea air is good for you!"
Collapse
Affiliation(s)
- P P A Smyth
- School of Physics and Environmental Change Institute, National University of Ireland, Galway, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Thorsten Hoffmann
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Ru-Jin Huang
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Liao J, Sihler H, Huey LG, Neuman JA, Tanner DJ, Friess U, Platt U, Flocke FM, Orlando JJ, Shepson PB, Beine HJ, Weinheimer AJ, Sjostedt SJ, Nowak JB, Knapp DJ, Staebler RM, Zheng W, Sander R, Hall SR, Ullmann K. A comparison of Arctic BrO measurements by chemical ionization mass spectrometry and long path-differential optical absorption spectroscopy. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014788] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Wentworth GR, Al-Abadleh HA. DRIFTS studies on the photosensitized transformation of gallic acid by iron(iii) chloride as a model for HULIS in atmospheric aerosols. Phys Chem Chem Phys 2011; 13:6507-16. [DOI: 10.1039/c0cp01953d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Haas JR. The potential feasibility of chlorinic photosynthesis on exoplanets. ASTROBIOLOGY 2010; 10:953-963. [PMID: 21118026 DOI: 10.1089/ast.2009.0364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater.
Collapse
Affiliation(s)
- Johnson R Haas
- Department of Geosciences, Western Michigan University, Kalamazoo, Michigan 49008, USA.
| |
Collapse
|