1
|
Fei Y, Liao J, Zhang Z. Consistency and Discrepancy between Visibility and PM 2.5 Measurements: Potential Application of Visibility Observation to Air Quality Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:898. [PMID: 36679697 PMCID: PMC9861879 DOI: 10.3390/s23020898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
High-quality measurements of air quality are the highest priority for understanding widespread air pollution. Visibility has been widely suggested to be a good alternative to PM2.5 concentration as a measure. In this study, the similarities and differences between visibility and PM2.5 measurements in China are checked and the results reveal the potential application of visibility observation to the study of air quality. Based on the quality-controlled PM2.5 and visibility data from 2016 to 2018, the nonparametric Spearman correlation coefficient (ρ) values between stations for PM2.5 and visibility-derived surface extinction coefficient (bext) decrease as the station distance (R) increases. Some relatively low ρ values (<0.4) occur in regions characterized by the lowest (background) levels of PM2.5 and bext values, for example, the Tibetan and Yungui Plateau. The relatively lower ρ for bext compared to PM2.5 is probably caused by the predefined maximum threshold of visibility measurements (generally 30 km). A significant correlation between PM2.5 and bext is derived in most stations and relatively larger ρ values are evident in eastern China (Northeast China excluded) and in winter (the national median ρ is 0.67). The abrupt changes in specific mass extinction efficiency (αext) imply a potentially large influence of alternation of visibility sensors or recalibrations on visibility measurements. The bext data are thereafter corrected by comparison to the reference measurements at the adjacent stations, which leads to a three-year quality assured of visibility and bext datasets.
Collapse
Affiliation(s)
| | - Jie Liao
- Correspondence: ; Tel.: +86-10-68408812
| | | |
Collapse
|
2
|
Chang K, Cooper OR, Gaudel A, Allaart M, Ancellet G, Clark H, Godin‐Beekmann S, Leblanc T, Van Malderen R, Nédélec P, Petropavlovskikh I, Steinbrecht W, Stübi R, Tarasick DW, Torres C. Impact of the COVID‐19 Economic Downturn on Tropospheric Ozone Trends: An Uncertainty Weighted Data Synthesis for Quantifying Regional Anomalies Above Western North America and Europe. AGU ADVANCES 2022; 3:e2021AV000542. [PMCID: PMC9111294 DOI: 10.1029/2021av000542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 05/17/2023]
Abstract
This study quantifies the association between the COVID‐19 economic downturn and 2020 tropospheric ozone anomalies above Europe and western North America, and their impact on long‐term trends. Anomaly detection for an atmospheric time series is usually carried out by identifying potentially aberrant data points relative to climatological values. However, detecting ozone anomalies from sparsely sampled ozonesonde profiles (once per week at most sites) is challenging due to ozone's high temporal variability. We first demonstrate the challenges for summarizing regional trends based on independent time series from multiple nearby ozone profiling stations. We then propose a novel regional‐scale anomaly detection framework based on generalized additive mixed models, which accounts for the sampling frequency and inherent data uncertainty associated with each vertical profile data set, measured by ozonesondes, lidar or commercial aircraft. This method produces a long‐term monthly time series with high vertical resolution that reports ozone anomalies from the surface to the middle‐stratosphere under a unified framework, which can be used to quantify the regional‐scale ozone anomalies during the COVID‐19 economic downturn. By incorporating extensive commercial aircraft data and frequently sampled ozonesonde profiles above Europe, we show that the complex interannual variability of ozone can be adequately captured by our modeling approach. The results show that free tropospheric ozone negative anomalies in 2020 are the most profound since the benchmark year of 1994 for both Europe and western North America, and positive trends over 1994–2019 are diminished in both regions by the 2020 anomalies. 2020 is the only year that both Europe and western North America show strong negative tropospheric ozone anomalies since 1994 Positive free tropospheric ozone trends above Europe and western North America since 1994 are diminished by the 2020 anomalies Data integration of multiple time series provides a better understanding of ozone variability compared to individual records
Collapse
Affiliation(s)
- Kai‐Lan Chang
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| | - Owen R. Cooper
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| | - Audrey Gaudel
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| | - Marc Allaart
- Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
| | | | | | | | - Thierry Leblanc
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyWrightwoodCAUSA
| | | | - Philippe Nédélec
- Laboratoire d’AérologieCNRS and Université de Toulouse IIIToulouseFrance
| | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderCOUSA
- NOAA Global Monitoring LaboratoryBoulderCOUSA
| | | | - René Stübi
- Federal Office of Meteorology and ClimatologyMeteoSwissPayerneSwitzerland
| | | | | |
Collapse
|
3
|
Variations in Ozone Concentration over the Mid-Latitude Region Revealed by Ozonesonde Observations in Pohang, South Korea. ATMOSPHERE 2020. [DOI: 10.3390/atmos11070746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ozone absorbs harmful UV rays at high elevations but acts as a pollutant gas in the lower atmosphere. It is necessary to monitor both the vertical profile and the total column ozone. In this study, variations in the ozone concentration of Pohang were divided into three vertical layers: the stratospheric layer (STL), the second ozone peak layer (SOPL), and the tropospheric layer (TRL). Our results indicated that the ozone concentration in the STL, SOPL, TRL, and total column ozone increased by 0.45%, 2.64%, 5.26%, and 1.07% decade−1, respectively. The increase in the SOPL during springtime indicates that stratosphere–troposphere exchange is accelerating, while the increase during summertime appears to have been influenced by the lower layers. The growth of tropospheric ozone concentration is the result of both increased ozone precursors from industrialization in East Asia and the influx of stratospheric ozone. Our results reaffirmed the trend of ozone concentration in mid-latitudes of the northern hemisphere from vertical profiles in Pohang and, in particular, suggests that the recent changes of ozone in this region need to be carefully monitored.
Collapse
|
4
|
Wang L, Newchurch MJ, Alvarez RJ, Berkoff TA, Brown SS, Carrion W, De Young RJ, Johnson BJ, Ganoe R, Gronoff G, Kirgis G, Kuang S, Langford AO, Leblanc T, McDuffie EE, McGee TJ, Pliutau D, Senff CJ, Sullivan JT, Sumnicht G, Twigg LW, Weinheimer AJ. Quantifying TOLNet Ozone Lidar Accuracy during the 2014 DISCOVER-AQ and FRAPPÉ Campaigns. ATMOSPHERIC MEASUREMENT TECHNIQUES 2017; 10:3865-3876. [PMID: 32742525 PMCID: PMC7394036 DOI: 10.5194/amt-10-3865-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of cross-instrument calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the "Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ)mission and the "Front Range Air Pollution and Photochemistry Éxperiment" (FRAPPÉ)to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. In terms of the range-resolving capability, the TOLNet lidars measured vertical ozone structures with an accuracy generally better than ±15% within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than ±5% for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate very good measurement accuracy for these three TOLNet lidars, making them suitable for use in air quality, satellite validation, and ozone modeling efforts.
Collapse
Affiliation(s)
- Lihua Wang
- University of Alabama in Huntsville, Huntsville, Alabama, USA
| | | | - Raul J. Alvarez
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
| | | | - Steven S. Brown
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
| | - William Carrion
- NASA Langley Research Center, Hampton, Virginia, USA
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | | | | | - Rene Ganoe
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | - Guillaume Gronoff
- NASA Langley Research Center, Hampton, Virginia, USA
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | - Guillaume Kirgis
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Shi Kuang
- University of Alabama in Huntsville, Huntsville, Alabama, USA
| | | | - Thierry Leblanc
- Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, California, USA
| | - Erin E. McDuffie
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | | | - Denis Pliutau
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | - Christoph J. Senff
- NOAA Earth System Research Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | | | - Grant Sumnicht
- Science Systems and Applications Inc., Lanham, Maryland, USA
| | | | | |
Collapse
|
5
|
Baylon PM, Jaffe DA, Pierce RB, Gustin MS. Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone in the Western U.S. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2994-3001. [PMID: 26882468 DOI: 10.1021/acs.est.6b00219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Baseline ozone refers to observed concentrations of tropospheric ozone at sites that have a negligible influence from local emissions. The Mount Bachelor Observatory (MBO) was established in 2004 to examine baseline air masses as they arrive to North America from the west. In May 2012, we observed an O3 increase of 2.0-8.5 ppbv in monthly average maximum daily 8-hour average O3 mixing ratio (MDA8 O3) at MBO and numerous other sites in the western U.S. compared to previous years. This shift in the O3 distribution had an impact on the number of exceedance days. We also observed a good correlation between daily MDA8 variations at MBO and at downwind sites. This suggests that under specific meteorological conditions, synoptic variation in O3 at MBO can be observed at other surface sites in the western U.S. At MBO, the elevated O3 concentrations in May 2012 are associated with low CO values and low water vapor values, consistent with transport from the upper troposphere/lower stratosphere (UT/LS). Furthermore, the Real-time Air Quality Modeling System (RAQMS) analyses indicate that a large flux of O3 from the UT/LS in May 2012 contributed to the observed enhanced O3 across the western U.S. Our results suggest that a network of mountaintop observations, LiDAR and satellite observations of O3 could provide key data on daily and interannual variations in baseline O3.
Collapse
Affiliation(s)
- Pao M Baylon
- Department of Atmospheric Sciences, University of Washington , 408 Atmospheric Sciences-Geophysics Building, Seattle, Washington 98195, United States
| | - Daniel A Jaffe
- Department of Atmospheric Sciences, University of Washington , 408 Atmospheric Sciences-Geophysics Building, Seattle, Washington 98195, United States
- School of Science, Technology, Engineering and Mathematics, University of Washington Bothell , 18115 Campus Way NE, Bothell, Washington 98011, United States
| | - R Bradley Pierce
- NOAA/NESDIS , Center for Satellite Applications and Research, Advanced Satellite Products Branch, 1225 West Dayton Street, Madison, Wisconsin 53705, United States
| | - Mae S Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno , Reno, Nevada 89557, United States
| |
Collapse
|