1
|
Sheoran R, Dumka UC, Hyvärinen AP, Sharma VP, Tiwari RK, Lihavainen H, Virkkula A, Hooda RK. Assessment of carbonaceous aerosols at Mukteshwar: A high-altitude (~2200 m amsl) background site in the foothills of the Central Himalayas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161334. [PMID: 36596417 DOI: 10.1016/j.scitotenv.2022.161334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The present study examined the equivalent black carbon (eBC) mass concentrations measured over 10.5 years (September 2005-March 2016) using a 7-wavelength Aethalometer (AE-31) at Mukteshwar, a high-altitude and regional background site in the foothills of Indian central Himalayas. The total spectral absorption coefficient (babs) was divided into three categories: black carbon (BC) and brown carbon (BrC); fossil fuels (FF) and wood/biomass burning (WB/BB); and primary and secondary sources. At the wavelength of 370 nm, a significant BrC contribution (25 %) to the total babs is identified, characterized by a pronounced seasonal variation with winter (December-January-February) maxima (31 %) and post-monsoon (October and November) minima (20 %); whereas, at 660 nm, the contribution of BrC is dramatically less (9 %). Climatologically, the estimated BCFF at 880 nm ranges from 0.25 ± 0.19 μg m-3 in July to 1.17 ± 0.80 μg m-3 in May with the annual average of 0.67 ± 0.63 μg m-3, accounting for 79 % of the BC mass. The maximum BCFF/BC fraction reaches its peak value during the monsoon (July and August, 85 %), indicating the dominance of local traffic emissions due to tourism activities. Further, the highest BCWB concentration observed during pre-monsoon (March-May) suggests the influence of local forest fires along with long-range transported aerosols from the low-altitude plains. The increased contribution of BrC (26 % at 370 nm) and WB absorption (61 % at 370 nm) to the total absorption at the shorter wavelengths suggests that wood burning is one of the major sources of BrC emissions. Secondary BrC absorption accounts for 24 % [91 %] of the total absorption [BrC absorption] at 370 nm, implying the dominance of secondary sources in BrC formation. A trend analysis for the measured BC concentration shows a statistically significant increasing trend with a slope of 0.02 μgm-3/year with a total increase of about 22 % over the study period. A back trajectory-based receptor model, potential source contribution function (PSCF), was used to identify the potential regional source region of BC. The main source regions of BC are the northwest states of India in the IGP region and the northeast Pakistan region.
Collapse
Affiliation(s)
- Rahul Sheoran
- Aryabhatta Research Institute of Observational Sciences, Nainital 263001, India; Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273009, India.
| | - U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital 263001, India.
| | - A P Hyvärinen
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland
| | - V P Sharma
- The Energy and Resources Institute, New Delhi, India
| | - Rakesh K Tiwari
- Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273009, India
| | - H Lihavainen
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland; Svalbard Integrated Arctic Earth Observing System, 156, 9171 Longyearbyen, Norway
| | - A Virkkula
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland
| | - Rakesh K Hooda
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland.
| |
Collapse
|
2
|
Morillas H, Gredilla A, Gallego-Cartagena E, Upasen S, Maguregui M, Madariaga JM. PM 10 spatial distribution and metals speciation study in the Bilbao metropolitan area during the 2017-2018 period. CHEMOSPHERE 2020; 259:127482. [PMID: 32640380 DOI: 10.1016/j.chemosphere.2020.127482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Speciation of respirable particles is becoming increasingly important from an epidemiological and analytical point of view to determine the potential effects of air pollution on human health. For this reason, current laws and analytical sampling methods focus on particle size, as it turns out to be the main factor for the greater or lesser penetration into the airways. In this sense, particles of less than 10 μm in diameter (<10 μm), referred to as PM10, are the particles that have a higher capacity for access to the respiratory tract and, therefore, more significant effect on them. In this sense, one of the most important factors that have a key role in the PM10 atmospheric pollution effect is the dispersion effect with the direct influence of natural effects such as wind, rain, topography apart from others. In this work, PM10 data extracted from the Basque Government environmental stations (19 sampling points) in the Biscay province (Basque Country, north of Spain) were combined with the results obtained from the use of self-made passive samplers (SMPS) in the same sampling points areas and subsequently, the sample analysis with a non-invasive elemental technique (Scanning Electron Microscope coupled to Energy Dispersive X-ray Spectrometry) was carried out. Thanks to this methodology, it was possible to determine a wide variety of metals in PM10 such as Al, Fe, Cr, Ni, Pb, Zn, Ti, etc. Most of them present as oxides and others as part of natural aggregations such as quartz, aluminosilicates, phosphates etc.
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Department of Mathematics and Experimental Sciences Didactics, Faculty of Education, Philosophy and Anthropology, University of the Basque Country UPV/EHU, II Building, Oñati Plaza 3, 20018, Donostia-San Sebastian, Basque Country, Spain.
| | - Ainara Gredilla
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, E-2018, San Sebastián, Basque Country, Spain
| | - Euler Gallego-Cartagena
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Department of Civil and Environmental, Universidad de La Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia
| | - Settakorn Upasen
- Research Unit of Developing Technology and Innovation of Alternative Energy for Industries, Burapha University, 169 Long-Hard Bangsean Road, Seansuk Sub-District, Muang District, Chonburi Province, 20131, Thailand
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| |
Collapse
|
3
|
Shika S, Gadhavi H, Suman MNS, Ravikrishna R, Gunthe SS. Atmospheric aerosol properties at a semi-rural location in southern India: particle size distributions and implications for cloud droplet formation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2804-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
4
|
Zhang X, Yin Y, Lin Z, Han Y, Hao J, Yuan L, Chen K, Chen J, Kong S, Shan Y, Xiao H, Tan W. Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:309-320. [PMID: 27744158 DOI: 10.1016/j.scitotenv.2016.09.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
To quantify the physical/chemical properties, and the formation and growth processes of aerosol particles on mountainous regions in Southeast China, an intensive field campaign was conducted from April to July 2008 on the top of Mt. Huang (1840m above mean sea level). The average particle number concentration was 2.35×103cm-3, and the ultrafine particles (<0.1μm) represented 70.5% of the total particle number concentration. Excluding the accumulation mode particles, the average daytime particle number concentrations were prominently higher than those measured at nighttime, suggesting there was a diurnal pattern of changes between planetary boundary layer and free troposphere air. The aerosol spectra were classified into two categories: the first category (FCS) exhibited a clear diurnal cycle, with relatively higher number concentration (3.19×103cm-3), smaller sizes and air masses from the inland; the second category (SCS) presented less obvious diurnal cycle, with lower number concentration (1.88×103cm-3), larger sizes and air masses from coastal regions. Air mass sources, weather conditions, and new particle formation (NPF) events were responsible for the differences of these two particle spectra. Six NPF events were identified, which usually began at 10:00-11:00 LT, with the estimated formation rate J10 in the range of 0.09-0.30cm-3s-1 and the growth rate at 1.42-4.53nmh-1. Wind speed, sulfur dioxide and ozone concentrations were higher on NPF days than those on non-NPF days, whereas temperature, relative humidity, concentrations of nitrogen oxide and carbonic oxide were lower on NPF days. Sulfur dioxide and ozone might be main potentially precursor gases for those NPF events. The NPF events at Mt. Huang corresponded closely to a southwest winds. These results are useful for improving our understanding of the main factors controlling the variation of aerosol size distribution and NPF events in this region.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Zhenyi Lin
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongxiang Han
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jian Hao
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Liang Yuan
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kui Chen
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jinghua Chen
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shaofei Kong
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yunpeng Shan
- Atmospheric Science Division, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Hui Xiao
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wen Tan
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
5
|
Babu SS, Kompalli SK, Moorthy KK. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:351-365. [PMID: 27151497 DOI: 10.1016/j.scitotenv.2016.03.246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/08/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~15-15,000nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter <100nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167nm and 1150 to 1760nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from ultrafine particles to accumulation sizes varied between 1 and 15nmh(-1), with mean growth rate of ~7.35±2.93nmh(-1).
Collapse
Affiliation(s)
- S Suresh Babu
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, India.
| | - Sobhan Kumar Kompalli
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, India
| | - K Krishna Moorthy
- Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
6
|
Panwar TS, Hooda RK, Lihavainen H, Hyvarinen AP, Sharma VP, Viisanen Y. Atmospheric aerosols at a regional background Himalayan site--Mukteshwar, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:4753-4764. [PMID: 23160718 DOI: 10.1007/s10661-012-2902-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Continuous aerosol measurements were made at a regional background station (Mukteshwar) located in a rural Himalayan mountain terrain from December 2005 to December 2008 for a period of 3 years. The average concentrations of particulate matter less than or equal to 10 μm (PM₁₀), particulate matter less than or equal to 2.5 μm (PM₂.₅) and black carbon (BC) are 46.0, 26.6 and 0.85 μg/m(3) during the study period. Majority of the PM₁₀ values lie below 100 μg/m(3) while majority of the PM₂.₅ values lie below 30 μg/m(3). It is further seen that during the monsoon months, especially July and August, the average values are comparatively low. It is also noted that the PM₂.₅/PM₁₀ ratios between 0.50 and 0.75 have the maximum frequency distribution in the data set. Furthermore, the monthly mean ratio of BC to PM₂.₅ mass lies between 3.0 and 7.5 % during the study period. Though the average PM₁₀ and PM₂.₅ concentrations during the study period are less than the respective Indian ambient air quality standards, however, they are still above the WHO guidelines and would have adverse health impacts. This shows that even in rural/background regions that are far away from major pollution sources or urban areas, the aerosol concentrations are significant and require long-term monitoring, source quantification and aerosol model simulations.
Collapse
Affiliation(s)
- T S Panwar
- The Energy and Resources Institute, IHC, Lodi Road, New Delhi 110003, India.
| | | | | | | | | | | |
Collapse
|
7
|
Moorthy KK, Sreekanth V, Prakash Chaubey J, Gogoi MM, Suresh Babu S, Kumar Kompalli S, Bagare SP, Bhatt BC, Gaur VK, Prabhu TP, Singh NS. Fine and ultrafine particles at a near–free tropospheric environment over the high-altitude station Hanle in the Trans-Himalaya: New particle formation and size distribution. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Gautam R, Hsu NC, Lau KM. Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd013819] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Yu F, Luo G, Bates TS, Anderson B, Clarke A, Kapustin V, Yantosca RM, Wang Y, Wu S. Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013473] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|