1
|
Godin PJ, Schuerger AC, Moores JE. Salt Tolerance and UV Protection of Bacillus subtilis and Enterococcus faecalis under Simulated Martian Conditions. ASTROBIOLOGY 2021; 21:394-404. [PMID: 33237800 DOI: 10.1089/ast.2020.2285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultraviolet (UV) irradiation on the surface of Mars is an important factor that affects the survivability of microorganisms on Mars. The possibility of martian brines made from Fe2(SO4)3, MnSO4, and MgSO4 salts providing a habitable niche on Mars via attenuation of UV radiation was investigated on the bacteria Bacillus subtilis and Enterococcus faecalis. Results demonstrate that it is possible for brines containing Fe2(SO4)3 on Mars to provide protection from harmful UV irradiation, even at concentrations as low as 0.5%. Brines made from MnSO4 and MgSO4 did not provide significant UV protection, and most spores/cells died over the course of short-term experiments. However, Fe2(SO4)3 brines are strongly acidic and thus were lethal to E. faecalis, when cells were exposed for 7 days. In contrast, B. subtilis, a spore-forming bacterium resistant to pH extremes, was unaffected by the acidic conditions of the brines and did not experience any significant lethal effects in Fe2(SO4)3. Any extant microbial life in martian Fe2(SO4)3 brines (if present) would need to be capable of surviving acidic environments, if these brines are to be considered a possible habitable niche. The results from this work are important to the search for life on planets with atmospheres that do not significantly attenuate UV radiation (i.e., like Mars) and to planetary protection, since it is possible that terrestrial bacteria in the genus Bacillus are likely to survive in Fe-sulfate brines on Mars.
Collapse
Affiliation(s)
- Paul J Godin
- Department of Earth and Space Science and Engineering, York University, Toronto, Canada
| | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Space Life Sciences Lab, Merritt Island, Florida, USA
| | - John E Moores
- Department of Earth and Space Science and Engineering, York University, Toronto, Canada
| |
Collapse
|
2
|
Hydrogeochemical Study on Closed-Basin Lakes in Cold and Semi-Arid Climates of the Valley of the Gobi Lakes, Mongolia: Implications for Hydrology and Water Chemistry of Paleolakes on Mars. MINERALS 2020. [DOI: 10.3390/min10090792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies suggested that, generally, the climate of early Mars would have been semi-arid when the surface temperatures were above freezing. On early Mars, closed-basin lakes would have been created; however, the hydrogeochemical cycles of the lake systems are poorly constrained. Here we report results of our field surveys to terrestrial analogs of closed-basin lake systems that developed in cold and semi-arid climates: The Valley of the Gobi Lakes of Mongolia. Our results show that groundwater plays a central role not only in hydrology, but also in geochemical cycles in the lake systems. We find that groundwater predominantly flows into the lakes through local seepage and regional flows in semi-arid climates. Through the interactions with calcite-containing soils, local groundwater seepage provides Ca2+ and HCO3− to the lakes. In the wetland located in between the lakes, high-salinity shallow pools would provide Cl− and Na+ to the groundwater through infiltration. If similar processes occurred on early Mars, local seepage of groundwater would have provided magnesium and alkalinity to the early Jezero lakes, possibly leading to authigenic precipitation of lacustrine carbonates. On early Mars, infiltration of surface brine may have transported salts and oxidants on the surface to lakes via regional groundwater flows. We suggest that inflows of multiple types of groundwater in semi-arid climates could have caused redox disequilibria in closed-basin lakes on early Mars.
Collapse
|
3
|
Rodriguez JAP, Dobrea EN, Kargel JS, Baker VR, Crown DA, Webster KD, Berman DC, Wilhelm MB, Buckner D. The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits. Sci Rep 2020; 10:10347. [PMID: 32587301 PMCID: PMC7316829 DOI: 10.1038/s41598-020-64676-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
The oldest terrains of Mars are cratered landscapes, in which extensive valleys and basins are covered by ubiquitous fluvial plains. One current paradigm maintains that an impact-generated megaregolith underlies these sediments. This megaregolith was likely largely generated during the Early Noachian (~4.1 to ~3.94 Ga) when most Martian impact basins formed. We examined the geologic records of NW Hellas and NW Isidis, which include this epoch’s most extensive circum-basin outcrops. Here, we show that these regions include widespread, wind-eroded landscapes, crater rims eroded down by several hundred meters, pitted plains, and inverted fluvial and crater landforms. These surfaces exhibit few fresh craters, indicating geologically recent wind erosion. The deep erosion, topographic inversions, and an absence of dunes on or near talus across these regions suggest that sediments finer than sand compose most of these highland materials. We propose that basin-impact-generated hurricane-force winds created sediment-laden atmospheric conditions, and that muddy rains rapidly settled suspended sediments to construct extensive Early Noachian highlands. The implied high abundance of fine-grained sediments before these impacts suggests large-scale glacial silt production and supports the previously proposed Noachian “icy highlands” hypothesis. We suggest that subglacial meltwater interactions with the sedimentary highlands could have promoted habitability, particularly in clay strata.
Collapse
Affiliation(s)
- J Alexis P Rodriguez
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA.
| | - Eldar Noe Dobrea
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Jeffrey S Kargel
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - V R Baker
- Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - David A Crown
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Kevin D Webster
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Daniel C Berman
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | | | - Denise Buckner
- University of North Dakota, Department of Space Studies, Grand Forks, ND, 58202, USA.,Blue Marble Space Institute of Science, 1001 4th Ave, Suite 3201, Seattle, WA, 98154, USA
| |
Collapse
|
4
|
Davis JM, Gupta S, Balme M, Grindrod PM, Fawdon P, Dickeson ZI, Williams RM. A Diverse Array of Fluvial Depositional Systems in Arabia Terra: Evidence for mid-Noachian to Early Hesperian Rivers on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2019; 124:1913-1934. [PMID: 31598451 PMCID: PMC6774298 DOI: 10.1029/2019je005976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/24/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Branching to sinuous ridges systems, hundreds of kilometers in length and comprising layered strata, are present across much of Arabia Terra, Mars. These ridges are interpreted as depositional fluvial channels, now preserved as inverted topography. Here we use high-resolution image and topographic data sets to investigate the morphology of these depositional systems and show key examples of their relationships to associated fluvial landforms. The inverted channel systems likely comprise indurated conglomerate, sandstone, and mudstone bodies, which form a multistory channel stratigraphy. The channel systems intersect local basins and indurated sedimentary mounds, which we interpret as paleolake deposits. Some inverted channels are located within erosional valley networks, which have regional and local catchments. Inverted channels are typically found in downslope sections of valley networks, sometimes at the margins of basins, and numerous different transition morphologies are observed. These relationships indicate a complex history of erosion and deposition, possibly controlled by changes in water or sediment flux, or base-level variation. Other inverted channel systems have no clear preserved catchment, likely lost due to regional resurfacing of upland areas. Sediment may have been transported through Arabia Terra toward the dichotomy and stored in local and regional-scale basins. Regional stratigraphic relations suggest these systems were active between the mid-Noachian and early Hesperian. The morphology of these systems is supportive of an early Mars climate, which was characterized by prolonged precipitation and runoff.
Collapse
Affiliation(s)
- Joel M. Davis
- Department of Earth SciencesNatural History MuseumLondonUK
| | - Sanjeev Gupta
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - Matthew Balme
- School of Physical SciencesThe Open UniversityBuckinghamshireUK
| | | | - Peter Fawdon
- School of Physical SciencesThe Open UniversityBuckinghamshireUK
| | | | | |
Collapse
|
5
|
Seybold HJ, Kite E, Kirchner JW. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate. SCIENCE ADVANCES 2018; 4:eaar6692. [PMID: 29963627 PMCID: PMC6021146 DOI: 10.1126/sciadv.aar6692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/18/2018] [Indexed: 05/29/2023]
Abstract
Mars' surface bears the imprint of valley networks formed billions of years ago. Whether these networks were formed by groundwater sapping, ice melt, or fluvial runoff has been debated for decades. These different scenarios have profoundly different implications for Mars' climatic history and thus for its habitability in the distant past. Recent studies on Earth revealed that valley networks in arid landscapes with more surface runoff branch at narrower angles, while in humid environments with more groundwater flow, branching angles are much wider. We find that valley networks on Mars generally tend to branch at narrow angles similar to those found in arid landscapes on Earth. This result supports the inference that Mars once had an active hydrologic cycle and that Mars' valley networks were formed primarily by overland flow erosion, with groundwater seepage playing only a minor role.
Collapse
Affiliation(s)
| | - Edwin Kite
- University of Chicago, Chicago, IL 60637, USA
| | - James W. Kirchner
- ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
- Department of Earth and Planetary Science, University of California, 307 McCone Hall, Berkeley, CA 94720–4767, USA
| |
Collapse
|
6
|
Black BA, Perron JT, Hemingway D, Bailey E, Nimmo F, Zebker H. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science 2017; 356:727-731. [PMID: 28522528 DOI: 10.1126/science.aag0171] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/06/2017] [Indexed: 11/02/2022]
Abstract
Rivers have eroded the topography of Mars, Titan, and Earth, creating diverse landscapes. However, the dominant processes that generated topography on Titan (and to some extent on early Mars) are not well known. We analyzed drainage patterns on all three bodies and found that large drainages, which record interactions between deformation and erosional modification, conform much better to long-wavelength topography on Titan and Mars than on Earth. We use a numerical landscape evolution model to demonstrate that short-wavelength deformation causes drainage directions to diverge from long-wavelength topography, as observed on Earth. We attribute the observed differences to ancient long-wavelength topography on Mars, recent or ongoing generation of long-wavelength relief on Titan, and the creation of short-wavelength relief by plate tectonics on Earth.
Collapse
Affiliation(s)
- Benjamin A Black
- Department of Earth and Atmospheric Science, City College of New York, City University of New York, New York, NY, USA. .,Earth and Environmental Science, The Graduate Center, City University of New York, New York, NY, USA
| | - J Taylor Perron
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas Hemingway
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA.
| | - Elizabeth Bailey
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Zebker
- Department of Geophysics, School of Earth Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Abstract
The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2-H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radiative-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ~75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.
Collapse
Affiliation(s)
- Ramses M Ramirez
- Carl Sagan Institute, Cornell University, Ithaca, NY, 14853, USA
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY, 14853, USA
| | - James F Kasting
- Department of Geosciences, Penn State University, University, Park, PA,16802, USA
- Penn State Astrobiology Research Center, Penn State University University Park, PA,16802, USA
- NASA Astrobiology Institute Virtual Planetary Laboratory, University of Washington, 98195, USA
| |
Collapse
|
8
|
Baker VR, Hamilton CW, Burr DM, Gulick VC, Komatsu G, Luo W, Rice JW, Rodriguez J. Fluvial geomorphology on Earth-like planetary surfaces: A review. GEOMORPHOLOGY (AMSTERDAM, NETHERLANDS) 2015; 245:149-182. [PMID: 29176917 PMCID: PMC5701759 DOI: 10.1016/j.geomorph.2015.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.
Collapse
Affiliation(s)
- Victor R. Baker
- Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christopher W. Hamilton
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Devon M. Burr
- Earth and Planetary Sciences Department, University of Tennessee-Knoxville, Knoxville, TN 37996-1410, USA
| | - Virginia C. Gulick
- SETI Institute, Mountain View, CA 94043, USA
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
| | - Goro Komatsu
- International Research School of Planetary Sciences, Università d’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
| | - Wei Luo
- Department of Geography, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - J.A.P. Rodriguez
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
- Planetary Science Institute, Tucson, AZ 85719, USA
| |
Collapse
|
9
|
Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly? Sci Rep 2015; 5:13404. [PMID: 26346067 PMCID: PMC4562069 DOI: 10.1038/srep13404] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022] Open
Abstract
Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.
Collapse
|
10
|
Glennie CL, Carter WE, Shrestha RL, Dietrich WE. Geodetic imaging with airborne LiDAR: the Earth's surface revealed. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:086801. [PMID: 23828665 DOI: 10.1088/0034-4885/76/8/086801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The past decade has seen an explosive increase in the number of peer reviewed papers reporting new scientific findings in geomorphology (including fans, channels, floodplains and landscape evolution), geologic mapping, tectonics and faulting, coastal processes, lava flows, hydrology (especially snow and runoff routing), glaciers and geo-archaeology. A common genesis of such findings is often newly available decimeter resolution 'bare Earth' geodetic images, derived from airborne laser swath mapping, a.k.a. airborne LiDAR, observations. In this paper we trace nearly a half century of advances in geodetic science made possible by space age technology, such as the invention of short-pulse-length high-pulse-rate lasers, solid state inertial measurement units, chip-based high speed electronics and the GPS satellite navigation system, that today make it possible to map hundreds of square kilometers of terrain in hours, even in areas covered with dense vegetation or shallow water. To illustrate the impact of the LiDAR observations we present examples of geodetic images that are not only stunning to the eye, but help researchers to develop quantitative models explaining how terrain evolved to its present form, and how it will likely change with time. Airborne LiDAR technology continues to develop quickly, promising ever more scientific discoveries in the years ahead.
Collapse
Affiliation(s)
- C L Glennie
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | | | | | | |
Collapse
|
11
|
Kereszturi A. Review of wet environment types on Mars with focus on duration and volumetric issues. ASTROBIOLOGY 2012; 12:586-600. [PMID: 22794300 DOI: 10.1089/ast.2011.0686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The astrobiological significance of certain environment types on Mars strongly depends on the temperature, duration, and chemistry of liquid water that was present there in the past. Recent works have focused on the identification of signs of ancient water on Mars, as it is more difficult to estimate the above-mentioned parameters. In this paper, two important factors are reviewed, the duration and the volume of water at different environment types on past and present Mars. Using currently available information, we can only roughly estimate these values, but as environment types show characteristic differences in this respect, it is worth comparing them and the result may have importance for research in astrobiology. Impact-induced and geothermal hydrothermal systems, lakes, and valley networks were in existence on Mars over the course of from 10(2) to 10(6) years, although they would have experienced substantially different temperature regimes. Ancient oceans, as well as water in outflow channels and gullies, and at the microscopic scale as interfacial water layers, would have had inherently different times of duration and overall volume: oceans may have endured from 10(4) to 10(6) years, while interfacial water would have had the smallest volume and residence time of liquid phase on Mars. Martian wet environments with longer residence times of liquid water are believed to have existed for that amount of time necessary for life to develop on Earth between the Late Heavy Bombardment and the age of the earliest fossil record. The results of this review show the necessity for more detailed analysis of conditions within geothermal heat-induced systems to reconstruct the conditions during weathering and mineral alteration, as well as to search for signs of reoccurring wet periods in ancient crater lakes.
Collapse
Affiliation(s)
- Akos Kereszturi
- Konkoly Thege Miklos Astronomical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
12
|
|
13
|
Andrews-Hanna JC, Lewis KW. Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003709] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Irwin RP, Craddock RA, Howard AD, Flemming HL. Topographic influences on development of Martian valley networks. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003620] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Hynek BM, Beach M, Hoke MRT. Updated global map of Martian valley networks and implications for climate and hydrologic processes. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003548] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Andrews-Hanna JC, Zuber MT, Arvidson RE, Wiseman SM. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003485] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
|
18
|
Hoke MRT, Hynek BM. Roaming zones of precipitation on ancient Mars as recorded in valley networks. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003247] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monica R. T. Hoke
- Department of Astrophysical and Planetary ScienceUniversity of Colorado at Boulder Boulder Colorado USA
- Laboratory for Atmospheric and Space PhysicsUniversity of Colorado at Boulder Boulder Colorado USA
| | - Brian M. Hynek
- Laboratory for Atmospheric and Space PhysicsUniversity of Colorado at Boulder Boulder Colorado USA
- Department of Geological SciencesUniversity of Colorado at Boulder Boulder Colorado USA
| |
Collapse
|