1
|
Kitamura N, Seki K, Keika K, Nishimura Y, Hori T, Hirahara M, Lund EJ, Kistler LM, Strangeway RJ. On the relationship between energy input to the ionosphere and the ion outflow flux under different solar zenith angles. EARTH, PLANETS, AND SPACE : EPS 2021; 73:202. [PMID: 34790028 PMCID: PMC8572202 DOI: 10.1186/s40623-021-01532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The ionosphere is one of the important sources for magnetospheric plasma, particularly for heavy ions with low charge states. We investigate the effect of solar illumination on the number flux of ion outflow using data obtained by the Fast Auroral SnapshoT (FAST) satellite at 3000-4150 km altitude from 7 January 1998 to 5 February 1999. We derive empirical formulas between energy inputs and outflowing ion number fluxes for various solar zenith angle ranges. We found that the outflowing ion number flux under sunlit conditions increases more steeply with increasing electron density in the loss cone or with increasing precipitating electron density (> 50 eV), compared to the ion flux under dark conditions. Under ionospheric dark conditions, weak electron precipitation can drive ion outflow with small averaged fluxes (~ 107 cm-2 s-1). The slopes of relations between the Poynting fluxes and outflowing ion number fluxes show no clear dependence on the solar zenith angle. Intense ion outflow events (> 108 cm-2 s-1) occur mostly under sunlit conditions (solar zenith angle < 90°). Thus, it is presumably difficult to drive intense ion outflows under dark conditions, because of a lack of the solar illumination (low ionospheric density and/or small scale height owing to low plasma temperature).
Collapse
Affiliation(s)
- Naritoshi Kitamura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kanako Seki
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Keika
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yukitoshi Nishimura
- Department of Electrical and Computer Engineering and Center for Space Physics, Boston University, Boston, MA USA
| | - Tomoaki Hori
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Masafumi Hirahara
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Eric J. Lund
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
- College Brook Scientific, Durham, NH USA
| | - Lynn M. Kistler
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
- Department of Physics, University of New Hampshire, Durham, NH USA
| | - Robert J. Strangeway
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA USA
| |
Collapse
|
2
|
Glocer A, Toth G, Fok MC. Including Kinetic Ion Effects in the Coupled Global Ionospheric Outflow Solution. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2018; 123:2851-2871. [PMID: 33510994 PMCID: PMC7839317 DOI: 10.1002/2018ja025241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a new expansion of the Polar Wind Outflow Model (PWOM) to include kinetic ions using the Particle-in-Cell (PIC) approach with Monte Carlo collisions. This implementation uses the original hydrodynamic solution at low altitudes for efficiency, and couples to the kinetic solution at higher altitudes to account for kinetic effects important for ionospheric outflow. The modeling approach also includes wave-particle interactions, suprathermal electrons, and an hybrid parallel computing approach combining shared and distributed memory paralellization. The resulting model is thus a comprehensive, global, model of ionospheric outflow that can be run efficiently on large supercomputing clusters. We demonstrate the model's capability to study a range of problems starting with the comparison of kinetic and hydrodynamic solutions along a single field line in the sunlit polar cap, and progressing to the altitude evolution of the ion conic distribution in the cusp region. The interplay between convection and the cusp on the global outflow solution is also examined. Finally, we demonstrate the impact of these new model features on the magnetosphere by presenting the first 2-way coupled ionospheric outflow-magnetosphere calculation including kinetic ion effects.
Collapse
Affiliation(s)
| | - G. Toth
- Climate and Space Sciences and Engineering, University of Michigan,Ann Arbor, MI, USA
| | | |
Collapse
|
3
|
|
4
|
|
5
|
Welling DT, Barakat AR, Eccles JV, Schunk RW, Chappell CR. Coupling the Generalized Polar Wind Model to Global Magnetohydrodynamics. MAGNETOSPHERE-IONOSPHERE COUPLING IN THE SOLAR SYSTEM 2016. [DOI: 10.1002/9781119066880.ch14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel T. Welling
- Department of Climate and Space Sciences and Engineering; University of Michigan; Ann Arbor MI USA
| | - Abdallah R. Barakat
- Center for Atmospheric and Space Sciences; Utah State University; Logan UT USA
| | - J. Vincent Eccles
- Center for Atmospheric and Space Sciences; Utah State University; Logan UT USA
| | - R. W. Schunk
- Center for Atmospheric and Space Sciences; Utah State University; Logan UT USA
| | | |
Collapse
|
6
|
Ilie R, Liemohn MW, Toth G, Yu Ganushkina N, Daldorff LKS. Assessing the role of oxygen on ring current formation and evolution through numerical experiments. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2015; 120:4656-4668. [PMID: 26937329 PMCID: PMC4758612 DOI: 10.1002/2015ja021157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 06/05/2023]
Abstract
Low O+/H+ ratio produced stronger ring currentInclusion of physics-based ionospheric outflow leads to a reduction in the CPCPOxygen presence is linked to a nightside reconnection point closer to the Earth.
Collapse
Affiliation(s)
- R. Ilie
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - M. W. Liemohn
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - G. Toth
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - N. Yu Ganushkina
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
- Earth ObservationsFinnish Meteorological InstituteHelsinkiFinland
| | - L. K. S. Daldorff
- Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
7
|
Glocer A, Kitamura N, Toth G, Gombosi T. Modeling solar zenith angle effects on the polar wind. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011ja017136] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Markidis S, Lapenta G, Bettarini L, Goldman M, Newman D, Andersson L. Kinetic simulations of magnetic reconnection in presence of a background O+population. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011ja016429] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Markidis
- Centrum voor Plasma-Astrofysica, Departement Wiskunde; Katholieke Universiteit Leuven; Heverlee Belgium
| | - G. Lapenta
- Centrum voor Plasma-Astrofysica, Departement Wiskunde; Katholieke Universiteit Leuven; Heverlee Belgium
| | - L. Bettarini
- Centrum voor Plasma-Astrofysica, Departement Wiskunde; Katholieke Universiteit Leuven; Heverlee Belgium
| | - M. Goldman
- Department of Physics; University of Colorado at Boulder; Boulder Colorado USA
| | - D. Newman
- Department of Physics; University of Colorado at Boulder; Boulder Colorado USA
| | - L. Andersson
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| |
Collapse
|
9
|
Najib D, Nagy AF, Tóth G, Ma Y. Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010ja016272] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dalal Najib
- Department of Atmospheric, Oceanic and Space Sciences; University of Michigan; Ann Arbor Michigan USA
| | - Andrew F. Nagy
- Department of Atmospheric, Oceanic and Space Sciences; University of Michigan; Ann Arbor Michigan USA
| | - Gábor Tóth
- Department of Atmospheric, Oceanic and Space Sciences; University of Michigan; Ann Arbor Michigan USA
| | - Yingjuan Ma
- Institute of Geophysics and Planetary Physics; University of California; Los Angeles California USA
| |
Collapse
|