Hühn C, Erlebach A, Mey D, Wondraczek L, Sierka M. Ab Initio energetics of SiO bond cleavage.
J Comput Chem 2017;
38:2349-2353. [PMID:
28749567 DOI:
10.1002/jcc.24892]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022]
Abstract
A multilevel approach that combines high-level ab initio quantum chemical methods applied to a molecular model of a single, strain-free SiOSi bridge has been used to derive accurate energetics for SiO bond cleavage. The calculated SiO bond dissociation energy and the activation energy for water-assisted SiO bond cleavage of 624 and 163 kJ mol-1 , respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H2 O-assisted SiO bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero-point vibrational contribution is in the range of -5 to 19 kJ mol-1 . © 2017 Wiley Periodicals, Inc.
Collapse