1
|
Automated, high frequency, on-line dimethyl sulfide measurements in natural waters using a novel "microslug" gas-liquid segmented flow method with chemiluminescence detection. Talanta 2021; 221:121595. [PMID: 33076129 DOI: 10.1016/j.talanta.2020.121595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/22/2022]
Abstract
Dimethyl sulfide (DMS) is the major biogenic volatile sulfur compound in surface seawater. Good quality DMS data with high temporal and spatial resolution are desirable for understanding reduced sulfur biogeochemistry. Here we present a fully automated and novel "microslug" gas-liquid segmented flow-chemiluminescence (MSSF-CL) based method for the continuous in-situ measurement of DMS in natural waters. Samples were collected into a flow tank and DMS transferred from the aqueous phase to the gas phase using a vario-directional coiled flow, in which microvolume liquid and gas slugs were interspersed. The separated DMS was reacted with ozone in a reaction cell for CL detection. The analytical process was automated, with a sample throughput of 6.6 h-1. Using MSSF for DMS separation was more effective and easily integrated with CL detection compared with the commonly used bubbling approach. Key parameters of the proposed method were investigated. The linear range for the method was 0.05-500 nM (R2 = 0.9984) and the limit of detection (3 x S/N) was 0.015 nM, which is comparable to the commonly used gas chromatography (GC) method and sensitive enough for direct DMS measurement in typical aquatic environments. Reproducibility and recovery were assessed by spiking natural water samples (river, lake, reservoir and pond) with different concentrations of DMS (10, 20 and 50 nM), giving relative standard deviations (RSDs) ≤1.75% (n = 5) and recoveries of 94.4-107.8%. This fully automated system is reagent free, easy to assemble, simple to use, portable (weight ~5.1 kg) and can be left in the field for several hours of unattended operation. The instrumentation can provide high quality DMS data for natural waters with an environmentally relevant temporal resolution of ~9 min.
Collapse
|
2
|
Wang F, Sun Y, Tao Y, Guo Y, Li Z, Zhao X, Zhou S. Pollution characteristics in a dusty season based on highly time-resolved online measurements in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2545-2558. [PMID: 30293007 DOI: 10.1016/j.scitotenv.2018.09.382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
To investigate the pollution characteristics and potential sources in a dusty season, an online analyzer was used to measure trace gases and major water-soluble ions in PM10 from April 1st to May 29th, 2011 in Lanzhou. The average concentrations of HONO, HNO3, HCl, SO2 and NH3 were 0.93, 1.16, 0.48, 9.29 and 5.54 μg/m3, respectively, and 2.8, 2.76, 8.28 and 2.48 μg/m3 for Cl-, NO3-, SO42- and NH4+. In the non-dust period, diurnal variations of SO42-, NO3- and their gaseous precursors showed similar change trend. NH4+ showed unimodal pattern whereas NH3 illustrated a bimodal pattern. HCl and Cl- showed an opposite diurnal pattern. In the dust event, temporal profiles of HCl and Cl-, SO2 and SO42- all presented similar change trend, and SO42- and Cl- preceded dust ions (Ca2+ and Mg2+) 13 h. The ratios of NO3- to SO42- were 0.65 in the non-dust period and 0.31 in the dust event. In the dust event, the sulfur oxidation ratio (SOR) was a factor of 1.33 greater than that in the non-dust period, and [SO42-]/[SO2] was 2.31 times of that in the non-dust period. The source apportionment using Probabilistic Matrix Factorization (PMF) suggested that fugitive dust (58.09%), secondary aerosols (33.98%), and biomass burning (7.93%) were the major sources in the non-dust period whereas dust (67.01%), salt lake (29.68%), biomass burning (0.8%), and motor vehicle (2.51%) were the primary sources in the dust event. Concentration weighted trajectory (CWT) model indicated that NO3-, Cl- and K+ could be regarded as local source species, the potential sources of Na+, Mg2+ and Ca2+ concentrated in the two large areas with the one covered in the junction areas of Xinjiang, Qinghai and Gansu and another one covered the places around in Lanzhou, the potential sources of SO42- were mainly localized in the areas adjacent to Lanzhou.
Collapse
Affiliation(s)
- Fanglin Wang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yunlong Sun
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Tao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yongtao Guo
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhongqin Li
- State Key Laboratory of Cryospheric Science/Tien Shan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiuge Zhao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Sheng Zhou
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Zhao S, Yu Y, Xia D, Yin D, He J, Liu N, Li F. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:107-122. [PMID: 26367704 DOI: 10.1016/j.envpol.2015.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0-2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters.
Collapse
Affiliation(s)
- Suping Zhao
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ye Yu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Dunsheng Xia
- MOE Key Laboratory of Western China's Environmental Systems & Research School of Arid Environment and Climate Change, Lanzhou University, Lanzhou, 730000, China
| | - Daiying Yin
- Key Laboratory of Desert and Desertification, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; Dunhuang Gobi and Desert Ecological and Environmental Research Station, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianjun He
- The College of Environmental Science & Engineering, Nankai University, Tianjin 300071, China
| | - Na Liu
- Weather Modification Office, Qinghai Provincial Meteorological Bureau, Xining 810001, China
| | - Fang Li
- Key Laboratory of Desert and Desertification, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Tang Y, Huang Y, Li L, Chen H, Chen J, Yang X, Gao S, Gross DS. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China. J Environ Sci (China) 2014; 26:2412-2422. [PMID: 25499489 DOI: 10.1016/j.jes.2014.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/25/2014] [Accepted: 04/11/2014] [Indexed: 06/04/2023]
Abstract
Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer (CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction, scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived. Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction. Aerosols with high extinction coefficient and scattering Ångström exponent (SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon (ECOC) particle type, the diurnal trends of single scattering albedo (SSA) and elemental carbon (EC) signal intensity had a negative correlation. We also found a negative correlation (r=-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas.
Collapse
Affiliation(s)
- Yong Tang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yuanlong Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ling Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hong Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan-Tyndall Center, Fudan University, Shanghai 200433, China
| | - Xin Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan-Tyndall Center, Fudan University, Shanghai 200433, China.
| | - Song Gao
- Division of Math, Science and Technology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Deborah S Gross
- Department of Chemistry, Carleton College, Northfield, MN 55057, USA
| |
Collapse
|
5
|
Li Z, Li C, Chen H, Tsay SC, Holben B, Huang J, Li B, Maring H, Qian Y, Shi G, Xia X, Yin Y, Zheng Y, Zhuang G. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015257] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Li C, Tsay SC, Fu JS, Dickerson RR, Ji Q, Bell SW, Gao Y, Zhang W, Huang J, Li Z, Chen H. Anthropogenic air pollution observed near dust source regions in northwestern China during springtime 2008. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013659] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|