2
|
Bell JF, Maki JN, Mehall GL, Ravine MA, Caplinger MA, Bailey ZJ, Brylow S, Schaffner JA, Kinch KM, Madsen MB, Winhold A, Hayes AG, Corlies P, Tate C, Barrington M, Cisneros E, Jensen E, Paris K, Crawford K, Rojas C, Mehall L, Joseph J, Proton JB, Cluff N, Deen RG, Betts B, Cloutis E, Coates AJ, Colaprete A, Edgett KS, Ehlmann BL, Fagents S, Grotzinger JP, Hardgrove C, Herkenhoff KE, Horgan B, Jaumann R, Johnson JR, Lemmon M, Paar G, Caballo-Perucha M, Gupta S, Traxler C, Preusker F, Rice MS, Robinson MS, Schmitz N, Sullivan R, Wolff MJ. The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. SPACE SCIENCE REVIEWS 2021; 217:24. [PMID: 33612866 PMCID: PMC7883548 DOI: 10.1007/s11214-020-00755-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 05/16/2023]
Abstract
Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.
Collapse
Affiliation(s)
| | | | | | - M. A. Ravine
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | - S. Brylow
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | | | | | | | | | - C. Tate
- Cornell Univ., Ithaca, NY USA
| | | | | | - E. Jensen
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - K. Paris
- Arizona State Univ., Tempe, AZ USA
| | | | - C. Rojas
- Arizona State Univ., Tempe, AZ USA
| | | | | | | | - N. Cluff
- Arizona State Univ., Tempe, AZ USA
| | | | - B. Betts
- The Planetary Society, Pasadena, CA USA
| | | | - A. J. Coates
- Mullard Space Science Laboratory, Univ. College, London, UK
| | - A. Colaprete
- NASA/Ames Research Center, Moffett Field, CA USA
| | - K. S. Edgett
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - B. L. Ehlmann
- JPL/Caltech, Pasadena, CA USA
- Caltech, Pasadena, CA USA
| | | | | | | | | | | | - R. Jaumann
- Inst. of Geological Sciences, Free University Berlin, Berlin, Germany
| | | | - M. Lemmon
- Space Science Inst., Boulder, CO USA
| | - G. Paar
- Joanneum Research, Graz, Austria
| | | | | | | | - F. Preusker
- DLR/German Aerospace Center, Berlin, Germany
| | - M. S. Rice
- Western Washington Univ., Bellingham, WA USA
| | | | | | | | | |
Collapse
|
3
|
Fischer E, Martínez GM, Rennó NO, Tamppari LK, Zent AP. Relative Humidity on Mars: New Results From the Phoenix TECP Sensor. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2019; 124:2780-2792. [PMID: 32025455 PMCID: PMC6988475 DOI: 10.1029/2019je006080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 05/28/2023]
Abstract
In situ measurements of relative humidity (RH) on Mars have only been performed by the Phoenix (PHX) and Mars Science Laboratory (MSL) missions. Here we present results of our recalibration of the PHX thermal and electrical conductivity probe (TECP) RH sensor. This recalibration was conducted using a TECP engineering model subjected to the full range of environmental conditions at the PHX landing site in the Michigan Mars Environmental Chamber. The experiments focused on the warmest and driest conditions (daytime) because they were not covered in the original calibration (Zent et al., 2010, https://doi.org/10.1029/2009JE003420) and previous recalibration (Zent et al., 2016, https://doi.org/10.1002/2015JE004933). In nighttime conditions, our results are in excellent agreement with the previous 2016 recalibration, while in daytime conditions, our results show larger water vapor pressure values. We obtain vapor pressure values in the range ~0.005-1.4 Pa, while Zent et al. (2016, https://doi.org/10.1002/2015JE004933) obtain values in the range ~0.004-0.4 Pa. Our higher daytime values are in better agreement with independent estimates from the ground by the PHX Surface Stereo Imager instrument and from orbit by Compact Reconnaissance Imaging Spectrometer for Mars. Our results imply larger day-to-night ratios of water vapor pressure at PHX compared to MSL, suggesting a stronger atmosphere-regolith interchange in the Martian arctic than at lower latitudes. Further, they indicate that brine formation at the PHX landing site via deliquescence can be achieved only temporarily between midnight and 6 a.m. on a few sols. The results from our recalibration are important because they shed light on the near-surface humidity environment on Mars.
Collapse
Affiliation(s)
- E. Fischer
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - G. M. Martínez
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
- Lunar and Planetary InstituteUniversities Space Research AssociationHoustonTXUSA
| | - N. O. Rennó
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - L. K. Tamppari
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - A. P. Zent
- NASA Ames Research CenterMountain ViewCAUSA
| |
Collapse
|
6
|
Holstein-Rathlou C, Gunnlaugsson HP, Merrison JP, Bean KM, Cantor BA, Davis JA, Davy R, Drake NB, Ellehoj MD, Goetz W, Hviid SF, Lange CF, Larsen SE, Lemmon MT, Madsen MB, Malin M, Moores JE, Nørnberg P, Smith P, Tamppari LK, Taylor PA. Winds at the Phoenix landing site. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003411] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|