1
|
Stack KM, Dietrich WE, Lamb MP, Sullivan RJ, Christian JR, Newman CE, O’Connell‐Cooper CD, Sneed JW, Day M, Baker M, Arvidson RE, Fedo CM, Khan S, Williams RME, Bennett KA, Bryk AB, Cofield S, Edgar LA, Fox VK, Fraeman AA, House CH, Rubin DM, Sun VZ, Van Beek JK. Orbital and In-Situ Investigation of Periodic Bedrock Ridges in Glen Torridon, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007096. [PMID: 35865672 PMCID: PMC9286800 DOI: 10.1029/2021je007096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Gale crater, the field site for NASA's Mars Science Laboratory Curiosity rover, contains a diverse and extensive record of aeolian deposition and erosion. This study focuses on a series of regularly spaced, curvilinear, and sometimes branching bedrock ridges that occur within the Glen Torridon region on the lower northwest flank of Aeolis Mons, the central mound within Gale crater. During Curiosity's exploration of Glen Torridon between sols ∼2300-3080, the rover drove through this field of ridges, providing the opportunity for in situ observation of these features. This study uses orbiter and rover data to characterize ridge morphology, spatial distribution, compositional and material properties, and association with other aeolian features in the area. Based on these observations, we find that the Glen Torridon ridges are consistent with an origin as wind-eroded bedrock ridges, carved during the exhumation of Mount Sharp. Erosional features like the Glen Torridon ridges observed elsewhere on Mars, termed periodic bedrock ridges (PBRs), have been interpreted to form transverse to the dominant wind direction. The size and morphology of the Glen Torridon PBRs are consistent with transverse formative winds, but the orientation of nearby aeolian bedforms and bedrock erosional features raise the possibility of PBR formation by a net northeasterly wind regime. Although several formation models for the Glen Torridon PBRs are still under consideration, and questions persist about the nature of PBR-forming paleowinds, the presence of PBRs at this site provides important constraints on the depositional and erosional history of Gale crater.
Collapse
Affiliation(s)
- Kathryn M. Stack
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - William E. Dietrich
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - Michael P. Lamb
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Robert J. Sullivan
- Cornell Center for Astrophysics & Planetary ScienceCornell UniversityIthacaNYUSA
| | - John R. Christian
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | | | | | - Jonathan W. Sneed
- Department of Earth, Planetary, and Space SciencesUniversity of California, Los AngelesLos AngelesCAUSA
| | - Mackenzie Day
- Department of Earth, Planetary, and Space SciencesUniversity of California, Los AngelesLos AngelesCAUSA
| | - Mariah Baker
- Center for Earth & Planetary StudiesNational Air & Space MuseumSmithsonian InstitutionWashingtonDCUSA
| | - Raymond E. Arvidson
- Department of Earth and Planetary SciencesWashington University in St. LouisSt. LouisMOUSA
| | - Christopher M. Fedo
- Department of Earth and Planetary SciencesUniversity of Tennessee, KnoxvilleKnoxvilleTNUSA
| | - Sabrina Khan
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | | | | | - Alexander B. Bryk
- Department of Earth and Planetary ScienceUniversity of California, BerkeleyBerkeleyCAUSA
| | - Shannon Cofield
- U.S. Department of the InteriorBureau of Ocean Energy ManagementWashingtonDCUSA
| | - Lauren A. Edgar
- Astrogeology Science CenterU.S. Geological SurveyFlagstaffAZUSA
| | - Valerie K. Fox
- Earth and Environmental SciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Abigail A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - David M. Rubin
- Earth and Planetary SciencesUniversity of California, Santa CruzSanta CruzCAUSA
| | - Vivian Z. Sun
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Jason K. Van Beek
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
2
|
Lapôtre MGA, Malaska MJ, Cable ML. The Role of Seasonal Sediment Transport and Sintering in Shaping Titan's Landscapes: A Hypothesis. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL097605. [PMID: 35860461 PMCID: PMC9285677 DOI: 10.1029/2021gl097605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Titan is a sedimentary world, with lakes, rivers, canyons, fans, dissected plateaux, and sand dunes. Sediments on Saturn's moon are thought to largely consist of mechanically weak organic grains, prone to rapid abrasion into dust. Yet, Titan's equatorial dunes have likely been active for 10s-100s kyr. Sustaining Titan's dunes over geologic timescales requires a mechanism that produces sand-sized particles at equatorial latitudes. We explore the hypothesis that a combination of abrasion, when grains are transported by winds or methane rivers, and sintering, when they are at rest, could produce sand grains that maintain an equilibrium size. Our model demonstrates that seasonal sediment transport may produce sand under Titan's surface conditions and could explain the latitudinal zonation of Titan's landscapes. Our findings support the hypothesis of global, source-to-sink sedimentary pathways on Titan, driven by seasons, and mediated by episodic abrasion and sintering of organic sand by rivers and winds.
Collapse
Affiliation(s)
| | - Michael J. Malaska
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Morgan L. Cable
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
3
|
Recognition of Sedimentary Rock Occurrences in Satellite and Aerial Images of Other Worlds—Insights from Mars. REMOTE SENSING 2021. [DOI: 10.3390/rs13214296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sedimentary rocks provide records of past surface and subsurface processes and environments. The first step in the study of the sedimentary rock record of another world is to learn to recognize their occurrences in images from instruments aboard orbiting, flyby, or aerial platforms. For two decades, Mars has been known to have sedimentary rocks; however, planet-wide identification is incomplete. Global coverage at 0.25–6 m/pixel, and observations from the Curiosity rover in Gale crater, expand the ability to recognize Martian sedimentary rocks. No longer limited to cases that are light-toned, lightly cratered, and stratified—or mimic original depositional setting (e.g., lithified deltas)—Martian sedimentary rocks include dark-toned examples, as well as rocks that are erosion-resistant enough to retain small craters as well as do lava flows. Breakdown of conglomerates, breccias, and even some mudstones, can produce a pebbly regolith that imparts a “smooth” appearance in satellite and aerial images. Context is important; sedimentary rocks remain challenging to distinguish from primary igneous rocks in some cases. Detection of ultramafic, mafic, or andesitic compositions do not dictate that a rock is igneous, and clast genesis should be considered separately from the depositional record. Mars likely has much more sedimentary rock than previously recognized.
Collapse
|
4
|
Urso A, Chojnacki M, Vaz DA. Dune-Yardang Interactions in Becquerel Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:353-368. [PMID: 29564199 PMCID: PMC5857962 DOI: 10.1002/2017je005465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.
Collapse
Affiliation(s)
- Anna Urso
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Matthew Chojnacki
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - David A Vaz
- INAF, Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Teramo, Teramo, Italy
- Centre for Earth and Space Research of the University of Coimbra, Observatório Geofísico e Astronómico da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin PY, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell-Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 DOI: 10.1002/2016je005225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/25/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
6
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin P, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell‐Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 PMCID: PMC5815393 DOI: 10.1002/2017je005267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/31/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
7
|
Hanna RD, Hamilton VE, Putzig NE. The complex relationship between olivine abundance and thermal inertia on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2016; 121:1293-1320. [PMID: 31007993 PMCID: PMC6469700 DOI: 10.1002/2015je004924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We examine four olivine-bearing regions at a variety of spatial scales with thermal infrared, visible to near-infrared, and visible imagery data to investigate the hypothesis that the relationship between olivine abundance and thermal inertia (i.e., effective particle size) can be used to infer the occurrence of olivine chemical alteration during sediment production on Mars. As in previous work, Nili Fossae and Isidis Planitia show a positive correlation between thermal inertia and olivine abundance in Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) data, which could be interpreted as indicating olivine chemical weathering. However, geomorphological analysis reveals that relatively olivine-poor sediments are not derived from adjacent olivine-rich materials, and therefore, chemical weathering cannot be inferred based on the olivine-thermal inertia relationship alone. We identify two areas (Terra Cimmeria and Argyre Planitia) with significant olivine abundance and thermal inertias consistent with sand, but no adjacent rocky (parent) units having even greater olivine abundances. More broadly, global analysis with TES reveals that the most typical olivine abundance on Mars is ~5-7% and that olivine-bearing (5-25%) materials have a wide range of thermal inertias, commonly 25-600 J m-2 K-1 s-1/2. TES also indicates that the majority of olivine-rich (>25%) materials have apparent thermal inertias less than 400 J m-2 K-1 s-1/2. In summary, we find that the relationship between thermal inertia and olivine abundance alone cannot be used in infer olivine weathering in the examined areas, that olivine-bearing materials have a large range of thermal intertias, and therefore that a complex relationship between olivine abundance and thermal inertia exists on Mars.
Collapse
Affiliation(s)
- Romy D Hanna
- Jackson School of Geological Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Victoria E Hamilton
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA
| | - Nathaniel E Putzig
- Department of Space Studies, Southwest Research Institute, Boulder, Colorado, USA
- Now at the Planetary Science Institute, Lakewood, Colorado, USA
| |
Collapse
|
8
|
The dune effect on sand-transporting winds on Mars. Nat Commun 2015; 6:8796. [PMID: 26537669 PMCID: PMC4667610 DOI: 10.1038/ncomms9796] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/06/2015] [Indexed: 11/15/2022] Open
Abstract
Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. The absence of in situ and long-term meteorological data hampers our understanding of wind movement on Mars. Here, the authors use 3D airflow modelling to investigate small scale ripple migration and suggest that local dune topography exerts a strong influence on wind speed and direction.
Collapse
|
9
|
Platz T, Byrne PK, Massironi M, Hiesinger H. Volcanism and tectonism across the inner solar system: an overview. ACTA ACUST UNITED AC 2014. [DOI: 10.1144/sp401.22] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractVolcanism and tectonism are the dominant endogenic means by which planetary surfaces change. This book, in general, and this overview, in particular, aim to encompass the broad range in character of volcanism, tectonism, faulting and associated interactions observed on planetary bodies across the inner solar system – a region that includes Mercury, Venus, Earth, the Moon, Mars and asteroids. The diversity and breadth of landforms produced by volcanic and tectonic processes are enormous, and vary across the inventory of inner solar system bodies. As a result, the selection of prevailing landforms and their underlying formational processes that are described and highlighted in this review are but a primer to the expansive field of planetary volcanism and tectonism. In addition to this extended introductory contribution, this Special Publication features 21 dedicated research articles about volcanic and tectonic processes manifest across the inner solar system. Those articles are summarized at the end of this review.
Collapse
Affiliation(s)
- T. Platz
- Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719-2395, USA
- Freie Universität Berlin, Institute of Geological Sciences, Planetary Sciences & Remote Sensing, Malteserstrasse 74-100, 12249 Berlin, Germany
| | - P. K. Byrne
- Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Boulevard, Houston, TX 77058, USA
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305, USA
| | - M. Massironi
- Dipartimento di Geoscienze, Universita' degli Studi di Padova, via G. Gradenigo 6, 35131 Padova, Italy
| | - H. Hiesinger
- Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
10
|
Kok JF, Parteli EJR, Michaels TI, Karam DB. The physics of wind-blown sand and dust. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:106901. [PMID: 22982806 DOI: 10.1088/0034-4885/75/10/106901] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.
Collapse
Affiliation(s)
- Jasper F Kok
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|