1
|
Liang D, Niu Z, Zhou W, Wang G, Feng X, Lyu M, Lu X, Liu W, Qu Y. Vertical measurements of atmospheric CO 2 and 14CO 2 at the northern foot of the Qinling Mountains in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171200. [PMID: 38408662 DOI: 10.1016/j.scitotenv.2024.171200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The CO2 and 14CO2 levels in air samples from the northern foot of the Qinling Mountains (Xi'an, China) were determined. In 2021, a hexacopter unmanned aerial vehicle sampled air at different heights, from near-ground to 2000 m. The objectives of this study were to determine vertical characteristics of CO2 and 14CO2, the sources of different-height CO2, and the influence of air mass transport. The CO2 concentrations mainly exhibited a slight decreasing trend with increasing height during summer observations, which was in contrast to the increasing trend that was followed by a subsequent gradual decreasing trend during early winter observations, with peak CO2 levels (443.4 ± 0.4-475.7 ± 0.5 ppm) at 100-500 m. The variation in vertical concentrations from 20 to 1000 m in early winter observations (21.6 ± 19.3 ppm) was greater than that in summer observations (14.6 ± 14.3 ppm), and the maximum vertical variation from 20 to ∼2000 m reached 61.1 ppm. Combining Δ14C and δ13C vertical measurements, the results showed that fossil fuel CO2 (CO2ff, 56.1 ± 15.2 %), which mainly come from coal combustion (81.2 ± 3.4 %), was the main contributor to CO2 levels in excess of the background level (CO2ex) during early winter observations. In contrast, biological CO2 (CO2bio) dominated CO2ex in summer observations. The vertical distributions of CO2ff in early winter observations and CO2bio in summer observations were consistent with those of CO2 during early winter and summer observations, respectively. The strong correlation between winter CO2bio and ΔCO (r = 0.81, p < 0.01) indicated that biomass burning was the main contributor to CO2bio during early winter observations. Approximately half of the air masses originated from the Guanzhong Basin during observations. The results provide insights into the vertical distribution of different-sources of atmospheric CO2 in scientific support of formulating carbon emission-reduction strategies.
Collapse
Affiliation(s)
- Dan Liang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Zhenchuan Niu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, China.
| | - Weijian Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an 710061, China; Interdisciplinary Research Center of Earth Science Frontier, Beijing Normal University, Beijing 100875, China
| | - Guowei Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Xue Feng
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Mengni Lyu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Xuefeng Lu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an 710061, China
| | - Wanyu Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Interdisciplinary Research Center of Earth Science Frontier, Beijing Normal University, Beijing 100875, China
| | - Yao Qu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Büchau YG, Leven C, Bange J. A portable low-cost device to quantify advective gas fluxes from mofettes into the lower atmosphere: First application to Starzach mofettes (Germany). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:138. [PMID: 38200374 PMCID: PMC10781820 DOI: 10.1007/s10661-023-12114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024]
Abstract
In this study, we introduce a portable low-cost device for in situ gas emission measurement from focused point sources of CO2, such as mofettes. We assess the individual sensors' precision with calibration experiments and perform an independent verification of the system's ability to measure gas flow rates in the range of liters per second. The results from one week of continuous CO2 flow observation from a wet mofette at the Starzach site is presented and correlated with the ambient meteorological dynamics. In the observed period, the gas flow rate of the examined mofette exhibits a dominant cycle of around four seconds that is linked to the gas rising upwards through a water column. We find the examined mofette to have a daily emission of 465 kg ±16 %. Furthermore, two events were observed that increased the flow rate abruptly by around 25 % within only a few minutes and a decaying period of 24 hours. These types of events were previously observed by others at the same site but dismissed as measurement errors. We discuss these events as a hydrogeological phenomenon similar to cold-water geyser eruptions. For meteorological events like the passages of high pressure fronts with steep changes in atmospheric pressure, we do not see a significant correlation between atmospheric parameters and the rate of gas exhalation in our one-week time frame, suggesting that on short timescales the atmospheric pumping effect plays a minor role for wet mofettes at the Starzach site.
Collapse
Affiliation(s)
- Yann Georg Büchau
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstr. 94-96, Tübingen, 72076, Baden-Württemberg, Germany.
| | - Carsten Leven
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstr. 94-96, Tübingen, 72076, Baden-Württemberg, Germany
| | - Jens Bange
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstr. 94-96, Tübingen, 72076, Baden-Württemberg, Germany
| |
Collapse
|
3
|
The Significance of Fast Radiative Transfer for Hyperspectral SWIR XCO2 Retrievals. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fast radiative transfer (RT) methods are commonplace in most algorithms which retrieve the column-averaged dry-mole fraction of carbon dioxide (XCO2) in the Earth’s atmosphere. These methods are required to keep the computational effort at a manageable level and to allow for operational processing of tens of thousands of measurements per day. Without utilizing any fast RT method, the involved computation times would be one to two orders of magnitude larger. In this study, we investigate three established methods within the same retrieval algorithm, and for the first time, analyze the impact of the fast RT method while keeping every other aspect of the algorithm the same. We perform XCO2 retrievals on measurements from the OCO-2 instrument and apply quality filters and parametric bias correction. We find that the central 50% of scene-by-scene differences in XCO2 between retrieval sets, after threshold filtering and bias correction, that use different fast RT methods, are less than 0.40 ppm for land scenes, and less than 0.11 ppm for ocean scenes. Significant regional differences larger than 0.3 ppm are observed and further studies with larger samples and regional-scale subsets need to be undertaken to fully understand the impact on applications that utilize space-based XCO2.
Collapse
|
4
|
Cogan AJ, Boesch H, Parker RJ, Feng L, Palmer PI, Blavier JFL, Deutscher NM, Macatangay R, Notholt J, Roehl C, Warneke T, Wunch D. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018087] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Niwa Y, Machida T, Sawa Y, Matsueda H, Schuck TJ, Brenninkmeijer CAM, Imasu R, Satoh M. Imposing strong constraints on tropical terrestrial CO2fluxes using passenger aircraft based measurements. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017474] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Wu L, Bocquet M, Lauvaux T, Chevallier F, Rayner P, Davis K. Optimal representation of source-sink fluxes for mesoscale carbon dioxide inversion with synthetic data. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016198] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lin Wu
- CEREA, Joint Laboratory École des Ponts ParisTech - EDF R&D, Université Paris-Est; Marne la Vallée France
- INRIA; Paris-Rocquencourt Research Center; Paris France
| | - Marc Bocquet
- CEREA, Joint Laboratory École des Ponts ParisTech - EDF R&D, Université Paris-Est; Marne la Vallée France
- INRIA; Paris-Rocquencourt Research Center; Paris France
| | - Thomas Lauvaux
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Frédéric Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement; CEA-CNRS-UVSQ, IPSL; Gif-sur-Yvette France
| | - Peter Rayner
- School of Earth Sciences; University of Melbourne; Melbourne, Victoria Australia
| | - Kenneth Davis
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| |
Collapse
|