1
|
Goetz C, Behar E, Beth A, Bodewits D, Bromley S, Burch J, Deca J, Divin A, Eriksson AI, Feldman PD, Galand M, Gunell H, Henri P, Heritier K, Jones GH, Mandt KE, Nilsson H, Noonan JW, Odelstad E, Parker JW, Rubin M, Simon Wedlund C, Stephenson P, Taylor MGGT, Vigren E, Vines SK, Volwerk M. The Plasma Environment of Comet 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2022; 218:65. [PMID: 36397966 PMCID: PMC9649581 DOI: 10.1007/s11214-022-00931-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/20/2022] [Indexed: 06/04/2023]
Abstract
The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency's Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet's orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future.
Collapse
Affiliation(s)
- Charlotte Goetz
- ESTEC, European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne, UK
| | - Etienne Behar
- Swedish Institute of Space Physics, Box 812, 981 28 Kiruna, Sweden
- Lagrange, OCA, UCA, CNRS, Nice, France
| | - Arnaud Beth
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - Dennis Bodewits
- Physics Department, Leach Science Center, Auburn University, Auburn, AL 36832 USA
| | - Steve Bromley
- Physics Department, Leach Science Center, Auburn University, Auburn, AL 36832 USA
| | - Jim Burch
- Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228-0510 USA
| | - Jan Deca
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, 3665 Discovery Drive, Boulder, CO 80303 USA
| | - Andrey Divin
- Earth Physics Department, St. Petersburg State University, Ulianovskaya, 1, St Petersburg, 198504 Russia
| | | | - Paul D. Feldman
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Marina Galand
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK
| | - Herbert Gunell
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - Pierre Henri
- Lagrange, OCA, UCA, CNRS, Nice, France
- LPC2E, CNRS, Orléans, France
| | - Kevin Heritier
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK
| | - Geraint H. Jones
- UCL Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT UK
- The Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London, WC1E 6BT UK
| | | | - Hans Nilsson
- Swedish Institute of Space Physics, Box 812, 981 28 Kiruna, Sweden
| | - John W. Noonan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85719 USA
| | - Elias Odelstad
- Swedish Institute of Space Physics, Box 537, SE-751 21 Uppsala, Sweden
| | | | - Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cyril Simon Wedlund
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| | - Peter Stephenson
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK
| | | | - Erik Vigren
- Swedish Institute of Space Physics, Box 537, SE-751 21 Uppsala, Sweden
| | - Sarah K. Vines
- Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723 USA
| | - Martin Volwerk
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| |
Collapse
|
2
|
Mitchell DG, Perry ME, Hamilton DC, Westlake JH, Kollmann P, Smith HT, Carbary JF, Waite JH, Perryman R, Hsu HW, Wahlund JE, Morooka MW, Hadid LZ, Persoon AM, Kurth WS. Dust grains fall from Saturn’s D-ring into its equatorial upper atmosphere. Science 2018; 362:362/6410/eaat2236. [DOI: 10.1126/science.aat2236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/06/2018] [Indexed: 11/02/2022]
Abstract
The sizes of Saturn’s ring particles range from meters (boulders) to nanometers (dust). Determination of the rings’ ages depends on loss processes, including the transport of dust into Saturn’s atmosphere. During the Grand Finale orbits of the Cassini spacecraft, its instruments measured tiny dust grains that compose the innermost D-ring of Saturn. The nanometer-sized dust experiences collisions with exospheric (upper atmosphere) hydrogen and molecular hydrogen, which forces it to fall from the ring into the ionosphere and lower atmosphere. We used the Magnetospheric Imaging Instrument to detect and characterize this dust transport and also found that diffusion dominates above and near the altitude of peak ionospheric density. This mechanism results in a mass deposition into the equatorial atmosphere of ~5 kilograms per second, constraining the age of the D-ring.
Collapse
|
4
|
Farrell WM, Wahlund JE, Morooka M, Kurth WS, Gurnett DA, MacDowall RJ. Ion Trapping by Dust Grains: Simulation Applications to the Enceladus Plume. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:729-743. [PMID: 32021741 PMCID: PMC6999740 DOI: 10.1002/2016je005235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using a particle-in-cell electrostatic simulation, we examine the conditions that allow low energy ions, like those produced in the Enceladus plume, to be attracted and trapped within the sheaths of negatively-charged dust grains. The conventional wisdom is that all new ions produced in the Enceladus plume are free to get picked up (i.e., accelerated by the local E-field to then undergo vB acceleration). However, we suggest herein that the presence of submicron charged dust in the plume impedes this pickup process since the local grain electric field greatly exceeds the co-rotation E-fields. The simulations demonstrate that cold ions will tend to accelerate toward the negatively charged grains and become part of the ion plasma sheath. These trapped ions will move with the grains, exiting the plume region at the dust speed. We suggest that Cassini's Langmuir probe is measuring the entire ion population (free and trapped ions), while the Cassini magnetometer detects the magnetic perturbations associated with pickup currents from the smaller population of free ions, with this distinction possibly reconciling the ongoing debate in the literature on the ion density in the plume.
Collapse
Affiliation(s)
- W M Farrell
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J-E Wahlund
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - M Morooka
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - W S Kurth
- University of Iowa, Iowa City, IA, USA
| | | | - R J MacDowall
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|
5
|
Shebanits O, Wahlund JE, Edberg NJT, Crary FJ, Wellbrock A, Andrews DJ, Vigren E, Desai RT, Coates AJ, Mandt KE, Waite JH. Ion and aerosol precursor densities in Titan's ionosphere: A multi-instrument case study. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2016; 121:10075-10090. [PMID: 31106104 PMCID: PMC6525009 DOI: 10.1002/2016ja022980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below ~1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere (n e /n i ≤ 0.1). We suggest that ion-ion (dusty) plasma may also be present in the dayside ionosphere below 900 km (n e /n i < 0.5 at 1000 km altitude). The average charge of the dust grains (≥1000 amu) is estimated to be between -2.5 and -1.5 elementary charges, increasing toward lower altitudes.
Collapse
Affiliation(s)
- O. Shebanits
- Swedish Institute of Space Physics, Uppsala, Sweden
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | | | | | - F. J. Crary
- University of Colorado Boulder, Boulder, Colorado, USA
| | - A. Wellbrock
- Mullard Space Science Laboratory, University College London, London, UK
- Centre for Planetary Sciences, University College London/Birkbeck, London, UK
| | | | - E. Vigren
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - R. T. Desai
- Mullard Space Science Laboratory, University College London, London, UK
- Centre for Planetary Sciences, University College London/Birkbeck, London, UK
| | - A. J. Coates
- Mullard Space Science Laboratory, University College London, London, UK
- Centre for Planetary Sciences, University College London/Birkbeck, London, UK
| | - K. E. Mandt
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas, USA
| | - J. H. Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| |
Collapse
|
6
|
Coates AJ, Wellbrock A, Waite JH, Jones GH. A new upper limit to the field-aligned potential near Titan. GEOPHYSICAL RESEARCH LETTERS 2015; 42:4676-4684. [PMID: 27609997 PMCID: PMC4994318 DOI: 10.1002/2015gl064474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/22/2015] [Indexed: 06/06/2023]
Abstract
Neutral particles dominate regions of the Saturn magnetosphere and locations near several of Saturn's moons. Sunlight ionizes neutrals, producing photoelectrons with characteristic energy spectra. The Cassini plasma spectrometer electron spectrometer has detected photoelectrons throughout these regions, where photoelectrons may be used as tracers of magnetic field morphology. They also enhance plasma escape by setting up an ambipolar electric field, since the relatively energetic electrons move easily along the magnetic field. A similar mechanism is seen in the Earth's polar wind and at Mars and Venus. Here we present a new analysis of Titan photoelectron data, comparing spectra measured in the sunlit ionosphere at ~1.4 Titan radii (RT) and at up to 6.8 RT away. This results in an upper limit on the potential of 2.95 V along magnetic field lines associated with Titan at up to 6.8 RT, which is comparable to some similar estimates for photoelectrons seen in Earth's magnetosphere.
Collapse
Affiliation(s)
- Andrew J Coates
- Mullard Space Science Laboratory University College London London UK; Centre for Planetary Sciences at UCL/Birkbeck London UK
| | - Anne Wellbrock
- Mullard Space Science Laboratory University College London London UK; Centre for Planetary Sciences at UCL/Birkbeck London UK
| | | | - Geraint H Jones
- Mullard Space Science Laboratory University College London London UK; Centre for Planetary Sciences at UCL/Birkbeck London UK
| |
Collapse
|