1
|
Elkins-Tanton LT, Asphaug E, Bell JF, Bierson CJ, Bills BG, Bottke WF, Courville SW, Dibb SD, Jun I, Lawrence DJ, Marchi S, McCoy TJ, Merayo JMG, Oran R, O’Rourke JG, Park RS, Peplowski PN, Prettyman TH, Raymond CA, Weiss BP, Wieczorek MA, Zuber MT. Distinguishing the Origin of Asteroid (16) Psyche. SPACE SCIENCE REVIEWS 2022; 218:17. [PMID: 35431348 PMCID: PMC9005435 DOI: 10.1007/s11214-022-00880-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/16/2022] [Indexed: 06/02/2023]
Abstract
The asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs. The spacecraft payload is designed to be able to discriminate among possible formation theories. The project will determine Psyche's origin and formation by measuring any strong remanent magnetic fields, which would imply it was the core of a differentiated body; the scale of metal to silicate mixing will be determined by both the neutron spectrometers and the filtered images; the degree of disruption between metal and rock may be determined by the correlation of gravity with composition; some mineralogy (e.g., modeled silicate/metal ratio, and inferred existence of low-calcium pyroxene or olivine, for example) will be detected using filtered images; and the nickel content of Psyche's metal phase will be measured using the GRNS.
Collapse
Affiliation(s)
- Linda T. Elkins-Tanton
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Erik Asphaug
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 USA
| | - James F. Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Carver J. Bierson
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | | | | | - Samuel W. Courville
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Steven D. Dibb
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Insoo Jun
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | - David J. Lawrence
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 USA
| | | | - Timothy J. McCoy
- Smithsonian National Museum of Natural History, Washington, DC 20013 USA
| | - Jose M. G. Merayo
- National Space Institute, Danish Technical University, Lyngby, Denmark
| | - Rona Oran
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA
| | - Joseph G. O’Rourke
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86387-2001 USA
| | - Ryan S. Park
- Jet Propulsion Laboratory, Pasadena, CA 91109 USA
| | | | | | | | - Benjamin P. Weiss
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA
| | - Mark A. Wieczorek
- Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Université Côte d’Azur, Nice, France
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA
| |
Collapse
|
2
|
Michaut C, Neufeld JA. Formation of the Lunar Primary Crust From a Long-Lived Slushy Magma Ocean. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL095408. [PMID: 35865331 PMCID: PMC9286579 DOI: 10.1029/2021gl095408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Classical fractional crystallization scenarios of early lunar evolution suggest crustal formation by the flotation of light anorthite minerals from a liquid magma ocean. However, this model is challenged by the> 200 Myr age range of primitive ferroan anorthosites, their concordance with Mg-suite magmatism and by the compositional diversity observed in lunar anorthosites. Here, we propose a new model of slushy magma ocean crystallization in which crystals remain suspended in the lunar interior and crust formation only begins once a critical crystal content is reached. Thereafter crustal formation occurs by buoyant melt extraction and magmatism. The mixture viscosity strongly depends on temperature and solid fraction driving the development of a surface stagnant lid where enhanced solidification and buoyant ascent of melt lead to an anorthite-enriched crust. This model explains lunar anorthosites heterogeneity and suggests a crustal formation timescale of 100s Ma, reconciling anorthosite ages with an early age of the Moon.
Collapse
Affiliation(s)
- Chloé Michaut
- Ecole Normale Supérieure de LyonUniversité de LyonUniversité Claude Bernard Lyon 1Laboratoire de Géologie de Lyon, Terre, Planètes, EnvironnementLyonFrance
- Institut Universitaire de FranceParisFrance
| | - Jerome A. Neufeld
- Centre for Environmental and Industrial FlowsUniversity of CambridgeCambridgeUK
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
| |
Collapse
|