1
|
Steele SC, Fu RR, Mittelholz A, Ermakov AI, Citron RI, Lillis RJ. Weak magnetism of Martian impact basins may reflect cooling in a reversing dynamo. Nat Commun 2024; 15:6831. [PMID: 39122701 PMCID: PMC11316139 DOI: 10.1038/s41467-024-51092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Understanding the longevity of Mars's dynamo is key to interpreting the planet's atmospheric loss history and the properties of its deep interior. Satellite data showing magnetic lows above many large impact basins formed 4.1-3.7 billion years ago (Ga) have been interpreted as evidence that Mars's dynamo terminated before 4.1 Ga-at least 0.4 Gy before intense late Noachian/early Hesperian hydrological activity. However, evidence for a longer-lived, reversing dynamo from young volcanics and the Martian meteorite ALH 84001 supports an alternative interpretation of Mars's apparently demagnetized basins. To understand how a reversing dynamo would affect basin fields, here we model the cooling and magnetization of 200-2200 km diameter impact basins under a range of Earth-like reversal frequencies. We find that magnetic reversals efficiently reduce field strengths above large basins. In particular, if the magnetic properties of the Martian mantle are similar to most Martian meteorites and late remagnetization of the near surface is widespread, >90% of large ( > 800 km diameter) basins would appear demagnetized at spacecraft altitudes. This ultimately implies that Mars's apparently demagnetized basins do not require an early dynamo cessation. A long-lived and reversing dynamo, unlike alternative scenarios, satisfies all available constraints on Mars's magnetic history.
Collapse
Affiliation(s)
- S C Steele
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
| | - R R Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - A Mittelholz
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - A I Ermakov
- Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
| | | | - R J Lillis
- Space Sciences Laboratory, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
2
|
Shen J, Paterson GA, Wang Y, Kirschvink JL, Pan Y, Lin W. Renaissance for magnetotactic bacteria in astrobiology. THE ISME JOURNAL 2023; 17:1526-1534. [PMID: 37592065 PMCID: PMC10504353 DOI: 10.1038/s41396-023-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Capable of forming magnetofossils similar to some magnetite nanocrystals observed in the Martian meteorite ALH84001, magnetotactic bacteria (MTB) once occupied a special position in the field of astrobiology during the 1990s and 2000s. This flourish of interest in putative Martian magnetofossils faded from all but the experts studying magnetosome formation, based on claims that abiotic processes could produce magnetosome-like magnetite crystals. Recently, the rapid growth in our knowledge of the extreme environments in which MTB thrive and their phylogenic heritage, leads us to advocate for a renaissance of MTB in astrobiology. In recent decades, magnetotactic members have been discovered alive in natural extreme environments with wide ranges of salinity (up to 90 g L-1), pH (1-10), and temperature (0-70 °C). Additionally, some MTB populations are found to be able to survive irradiated, desiccated, metal-rich, hypomagnetic, or microgravity conditions, and are capable of utilizing simple inorganic compounds such as sulfate and nitrate. Moreover, MTB likely emerged quite early in Earth's history, coinciding with a period when the Martian surface was covered with liquid water as well as a strong magnetic field. MTB are commonly discovered in suboxic or oxic-anoxic interfaces in aquatic environments or sediments similar to ancient crater lakes on Mars, such as Gale crater and Jezero crater. Taken together, MTB can be exemplary model microorganisms in astrobiology research, and putative ancient Martian life, if it ever occurred, could plausibly have included magnetotactic microorganisms. Furthermore, we summarize multiple typical biosignatures that can be applied for the detection of ancient MTB on Earth and extraterrestrial MTB-like life. We suggest transporting MTB to space stations and simulation chambers to further investigate their tolerance potential and distinctive biosignatures to aid in understanding the evolutionary history of MTB and the potential of magnetofossils as an extraterrestrial biomarker.
Collapse
Affiliation(s)
- Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Greig A Paterson
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Joseph L Kirschvink
- Division of Geological & Planetary Sciences, Calfiornia Institute of Technology, Pasadena, CA, 91125, USA
- Marine Core Research Institute, Kochi University, Kochi, 780-8520, Japan
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
3
|
Steele SC, Fu RR, Volk MW, North TL, Brenner AR, Muxworthy AR, Collins GS, Davison TM. Paleomagnetic evidence for a long-lived, potentially reversing martian dynamo at ~3.9 Ga. SCIENCE ADVANCES 2023; 9:eade9071. [PMID: 37224261 PMCID: PMC10957104 DOI: 10.1126/sciadv.ade9071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field. We use the quantum diamond microscope to analyze igneous Fe-sulfides in ALH 84001 that may carry remanence as old as 4.1 billion years (Ga). We find that individual, 100-μm-scale ferromagnetic mineral assemblages are strongly magnetized in two nearly antipodal directions. This suggests that the meteorite recorded strong fields following impact heating at 4.1 to 3.95 Ga, after which at least one further impact heterogeneously remagnetized the meteorite in a nearly antipodal local field. These observations are most simply explained by a reversing martian dynamo that was active until 3.9 Ga, thereby implying a late cessation for the martian dynamo and potentially documenting reversing behavior in a nonterrestrial planetary dynamo.
Collapse
Affiliation(s)
- Sarah C. Steele
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Roger R. Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Michael W. R. Volk
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Thomas L. North
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alec R. Brenner
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Adrian R. Muxworthy
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Gareth S. Collins
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thomas M. Davison
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Abstract
The habitable zone (HZ) is the circular region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. Space missions employ the HZ to select promising targets for follow-up habitability assessment. The classical HZ definition assumes that the most important greenhouse gases for habitable planets orbiting main-sequence stars are CO2 and H2O. Although the classical HZ is an effective navigational tool, recent HZ formulations demonstrate that it cannot thoroughly capture the diversity of habitable exoplanets. Here, I review the planetary and stellar processes considered in both classical and newer HZ formulations. Supplementing the classical HZ with additional considerations from these newer formulations improves our capability to filter out worlds that are unlikely to host life. Such improved HZ tools will be necessary for current and upcoming missions aiming to detect and characterize potentially habitable exoplanets.
Collapse
|