1
|
Oka M, Birn J, Egedal J, Guo F, Ergun RE, Turner DL, Khotyaintsev Y, Hwang KJ, Cohen IJ, Drake JF. Particle Acceleration by Magnetic Reconnection in Geospace. SPACE SCIENCE REVIEWS 2023; 219:75. [PMID: 37969745 PMCID: PMC10630319 DOI: 10.1007/s11214-023-01011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023]
Abstract
Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth's magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth's magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.
Collapse
Affiliation(s)
- Mitsuo Oka
- Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, 94720 CA USA
| | - Joachim Birn
- Center for Space Plasma Physics, Space Science Institute, 4765 Walnut Street, Boulder, 80301 CO USA
- Los Alamos National Laboratory, Los Alamos, 87545 NM USA
| | - Jan Egedal
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, 53706 WI USA
| | - Fan Guo
- Los Alamos National Laboratory, Los Alamos, 87545 NM USA
| | - Robert E. Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, 80303 CO USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, 2000 Colorado Avenue, Boulder, 80309 CO USA
| | - Drew L. Turner
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, 20723 MD USA
| | | | - Kyoung-Joo Hwang
- Southwest Research Institute, 6220 Culebra Road, San Antonio, 78238 TX USA
| | - Ian J. Cohen
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, 20723 MD USA
| | - James F. Drake
- Department of Physics, The Institute for Physical Science and Technology and The Joint Space Science Institute, University of Maryland, College Park, 20742 MD USA
| |
Collapse
|
2
|
Phan TD, Verniero JL, Larson D, Lavraud B, Drake JF, Øieroset M, Eastwood JP, Bale SD, Livi R, Halekas JS, Whittlesey PL, Rahmati A, Stansby D, Pulupa M, MacDowall RJ, Szabo PA, Koval A, Desai M, Fuselier SA, Velli M, Hesse M, Pyakurel PS, Maheshwari K, Kasper JC, Stevens JM, Case AW, Raouafi NE. Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL096986. [PMID: 35864893 PMCID: PMC9286436 DOI: 10.1029/2021gl096986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 06/09/2023]
Abstract
We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R s and 20 R s , respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of ∼3, due to the Alfvén speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energized protons were found to have leaked out of the exhaust along separatrix field lines, appearing as field-aligned energetic proton beams in a broad region outside the HCS. Concurrent dropouts of strahl electrons, indicating disconnection from the Sun, provide further evidence for the HCS being the source of the beams. Around the HCS in E07, there were also proton beams but without electron strahl dropouts, indicating that their origin was not the local HCS reconnection exhaust.
Collapse
Affiliation(s)
- T. D. Phan
- SSLUniversity of CaliforniaBerkeleyCAUSA
| | | | - D. Larson
- SSLUniversity of CaliforniaBerkeleyCAUSA
| | - B. Lavraud
- Laboratoire d'Astrophysique de BordeauxUniversity BordeauxPessacFrance
- IRAPCNRSCNESUniversité de ToulouseToulouseFrance
| | | | | | | | - S. D. Bale
- SSLUniversity of CaliforniaBerkeleyCAUSA
- Physics DepartmentUniversity of CaliforniaBerkeleyCAUSA
| | - R. Livi
- SSLUniversity of CaliforniaBerkeleyCAUSA
| | | | | | - A. Rahmati
- SSLUniversity of CaliforniaBerkeleyCAUSA
| | - D. Stansby
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
| | - M. Pulupa
- SSLUniversity of CaliforniaBerkeleyCAUSA
| | | | - P. A. Szabo
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - A. Koval
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- University of MarylandBaltimore CountyBaltimoreMDUSA
| | - M. Desai
- Southwest Research InstituteSan AntonioTXUSA
| | | | - M. Velli
- University of CaliforniaLos AngelesCAUSA
| | - M. Hesse
- NASA Ames Research CenterMoffett FieldCAUSA
| | | | | | - J. C. Kasper
- Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | | | - A. W. Case
- Smithsonian Astrophysical ObservatoryCambridgeMAUSA
| | - N. E. Raouafi
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| |
Collapse
|
3
|
Verscharen D, Wicks RT, Alexandrova O, Bruno R, Burgess D, Chen CHK, D’Amicis R, De Keyser J, de Wit TD, Franci L, He J, Henri P, Kasahara S, Khotyaintsev Y, Klein KG, Lavraud B, Maruca BA, Maksimovic M, Plaschke F, Poedts S, Reynolds CS, Roberts O, Sahraoui F, Saito S, Salem CS, Saur J, Servidio S, Stawarz JE, Štverák Š, Told D. A Case for Electron-Astrophysics. EXPERIMENTAL ASTRONOMY 2021; 54:473-519. [PMID: 36915623 PMCID: PMC9998602 DOI: 10.1007/s10686-021-09761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/07/2021] [Indexed: 06/18/2023]
Abstract
The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.
Collapse
Affiliation(s)
- Daniel Verscharen
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Space Science Center, University of New Hampshire, Durham, NH USA
| | - Robert T. Wicks
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne, UK
| | - Olga Alexandrova
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon, Paris, France
| | - Roberto Bruno
- Instituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - David Burgess
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | | | | | - Johan De Keyser
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - Thierry Dudok de Wit
- Laboratoire de Physique et Chimie de l’Environment et de l’Espace, CNRS, University of Orléans and CNES, Orléans, France
| | - Luca Franci
- School of Physics and Astronomy, Queen Mary University of London, London, UK
- Osservatorio Astrofisico di Arcetri, INAF, Firenze, Italy
| | - Jiansen He
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Pierre Henri
- Laboratoire de Physique et Chimie de l’Environment et de l’Espace, CNRS, University of Orléans and CNES, Orléans, France
- CNRS, UCA, OCA, Lagrange, Nice, France
| | - Satoshi Kasahara
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | | | - Kristopher G. Klein
- Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, Tucson, AZ USA
| | - Benoit Lavraud
- Laboratoire d’astrophysique de Bordeaux, Université de Bordeaux, CNRS, Pessac, France
- Institut de Recherche en Astrophysique et Planétologie, CNRS, UPS, CNES, Université de Toulouse, Toulouse, France
| | - Bennett A. Maruca
- Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE USA
| | - Milan Maksimovic
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon, Paris, France
| | | | - Stefaan Poedts
- Centre for Mathematical Plasma Astrophysics, KU Leuven, Leuven, Belgium
- Institute of Physics, University of Maria Curie-Skłodowska, Lublin, Poland
| | | | - Owen Roberts
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - Fouad Sahraoui
- Laboratoire de Physique des Plasmas, CNRS, École Polytechnique, Sorbonne Université, Observatoire de Paris-Meudon, Paris Saclay, Palaiseau, France
| | - Shinji Saito
- Space Environment Laboratory, National Institute of Information and Communications Technology, Tokyo, Japan
| | - Chadi S. Salem
- Space Sciences Laboratory, University of California, Berkeley, CA USA
| | - Joachim Saur
- Institut für Geophysik und Meteorologie, University of Cologne, Cologne, Germany
| | - Sergio Servidio
- Department of Physics, Università della Calabria, Rende, Italy
| | | | - Štěpán Štverák
- Astronomical Institute and Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Told
- Max Planck Institute for Plasma Physics, Garching, Germany
| |
Collapse
|