1
|
Mahnke C, Gomes R, Bundke U, Berg M, Ziereis H, Sharma M, Righi M, Hendricks J, Zahn A, Wahner A, Petzold A. Properties and Processing of Aviation Exhaust Aerosol at Cruise Altitude Observed from the IAGOS-CARIBIC Flying Laboratory. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6945-6953. [PMID: 38588448 PMCID: PMC11044579 DOI: 10.1021/acs.est.3c09728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
The characteristics of aviation-induced aerosol, its processing, and effects on cirrus clouds and climate are still associated with large uncertainties. Properties of aviation-induced aerosol, however, are crucially needed for the assessment of aviation's climate impacts today and in the future. We identified more than 1100 aircraft plume encounters during passenger aircraft flights of the IAGOS-CARIBIC Flying Laboratory from July 2018 to March 2020. The aerosol properties inside aircraft plumes were similar, independent of the altitude (i.e., upper troposphere, tropopause region, and lowermost stratosphere). The exhaust aerosol was found to be mostly externally mixed compared to the internally mixed background aerosol, even at a plume age of 1 to 3 h. No enhancement of accumulation mode particles (diameter >250 nm) could be detected inside the aircraft plumes. Particle number emission indices (EIs) deduced from the observations in aged plumes are in the same range as values reported from engine certifications. This finding, together with the observed external mixing state inside the plumes, indicates that the aviation exhaust aerosol almost remains in its emission state during plume expansion. It also reveals that the particle number EIs used in global models are within the range of the EIs measured in aged plumes.
Collapse
Affiliation(s)
- Christoph Mahnke
- Forschungszentrum
Jülich GmbH (FZJ), Institute of Energy
and Climate Research: Troposphere (IEK-8), Jülich 52428, Germany
| | - Rita Gomes
- Forschungszentrum
Jülich GmbH (FZJ), Institute of Energy
and Climate Research: Troposphere (IEK-8), Jülich 52428, Germany
| | - Ulrich Bundke
- Forschungszentrum
Jülich GmbH (FZJ), Institute of Energy
and Climate Research: Troposphere (IEK-8), Jülich 52428, Germany
| | - Marcel Berg
- Forschungszentrum
Jülich GmbH (FZJ), Institute of Energy
and Climate Research: Troposphere (IEK-8), Jülich 52428, Germany
| | - Helmut Ziereis
- Deutsches
Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen 82234, Germany
| | - Monica Sharma
- Deutsches
Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen 82234, Germany
- Faculty
of Aerospace Engineering, Delft University
of Technology, Delft 2600 AA, The Netherlands
| | - Mattia Righi
- Deutsches
Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen 82234, Germany
| | - Johannes Hendricks
- Deutsches
Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen 82234, Germany
| | - Andreas Zahn
- Karlsruhe
Institute of Technology (KIT), Institute
of Meteorology and Climate Research, Karlsruhe 76131, Germany
| | - Andreas Wahner
- Forschungszentrum
Jülich GmbH (FZJ), Institute of Energy
and Climate Research: Troposphere (IEK-8), Jülich 52428, Germany
| | - Andreas Petzold
- Forschungszentrum
Jülich GmbH (FZJ), Institute of Energy
and Climate Research: Troposphere (IEK-8), Jülich 52428, Germany
- Institute
for Atmospheric and Environmental Research, University of Wuppertal, Wuppertal 42119, Germany
| |
Collapse
|
2
|
Aircraft Emissions, Their Plume-Scale Effects, and the Spatio-Temporal Sensitivity of the Atmospheric Response: A Review. AEROSPACE 2022. [DOI: 10.3390/aerospace9070355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Non-CO2 aircraft emissions are responsible for the majority of aviation’s climate impact, however their precise effect is largely dependent on the environmental conditions of the ambient air in which they are released. Investigating the principal causes of this spatio-temporal sensitivity can bolster understanding of aviation-induced climate change, as well as offer potential mitigation solutions that can be implemented in the interim to low carbon flight regimes. This review paper covers the generation of emissions and their characteristic dispersion, air traffic distribution, local and global climate impact, and operational mitigation solutions, all aimed at improving scientific awareness of aviation’s non-CO2 climate impact.
Collapse
|
3
|
Anthropogenic Aerosols Effects on Ice Clouds: A Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the ability of anthropogenic aerosols to act as ice nucleation particles has been recognized, the effect of anthropogenic aerosols on ice clouds has attracted increasing attentions. In recent years, some progress has been made in investigating the effects of anthropogenic aerosols on ice clouds. In this paper, we briefly review the study on the impact of anthropogenic aerosols on ice nuclei, properties and radiative forcing of ice clouds. Anthropogenic aerosols can form ice nuclei through homogeneous nucleation and heterogeneous nucleation. Convective strength can modulate the response of ice clouds to anthropogenic aerosols by affecting the nucleation activities. There have been large uncertainties in calculating the radiative forcing of anthropogenic aerosols on ice clouds in climate models. Further studies on the impact of anthropogenic aerosols on ice clouds are imperative to provide better parameterization schemes and reduce the uncertainties of aerosol indirect effects.
Collapse
|
4
|
Schumann U, Bugliaro L, Dörnbrack A, Baumann R, Voigt C. Aviation Contrail Cirrus and Radiative Forcing Over Europe During 6 Months of COVID-19. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL092771. [PMID: 34230716 PMCID: PMC8250229 DOI: 10.1029/2021gl092771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 05/30/2023]
Abstract
The COVID-19 pandemic led to a 72% reduction of air traffic over Europe in March-August 2020 compared to 2019. Modeled contrail cover declined similarly, and computed mean instantaneous radiative contrail forcing dropped regionally by up to 0.7 W m-2. Here, model predictions of cirrus optical thickness and the top-of-atmosphere outgoing longwave and reflected shortwave irradiances are tested by comparison to Meteosat-SEVIRI-derived data. The agreement between observations and modeled data is slightly better when modeled contrail cirrus contributions are included. The spatial distributions and diurnal cycles of the differences in these data between 2019 and 2020 are partially caused by differences in atmospheric and surface conditions, particularly for solar radiation in the spring of 2020. Aviation signals become discernible in the observed differences of these data between 2019 and 2020 when subtracting numerical weather prediction model results that approximate the atmosphere and surface conditions without contrails.
Collapse
Affiliation(s)
- U. Schumann
- Institute of Atmospheric PhysicsDeutsches Zentrum für Luft‐ und RaumfahrtOberpfaffenhofenGermany
| | - L. Bugliaro
- Institute of Atmospheric PhysicsDeutsches Zentrum für Luft‐ und RaumfahrtOberpfaffenhofenGermany
| | - A. Dörnbrack
- Institute of Atmospheric PhysicsDeutsches Zentrum für Luft‐ und RaumfahrtOberpfaffenhofenGermany
| | - R. Baumann
- Institute of Atmospheric PhysicsDeutsches Zentrum für Luft‐ und RaumfahrtOberpfaffenhofenGermany
| | - C. Voigt
- Institute of Atmospheric PhysicsDeutsches Zentrum für Luft‐ und RaumfahrtOberpfaffenhofenGermany
- Johannes Gutenberg‐UniversityMainzGermany
| |
Collapse
|
5
|
Lee DS, Fahey DW, Skowron A, Allen MR, Burkhardt U, Chen Q, Doherty SJ, Freeman S, Forster PM, Fuglestvedt J, Gettelman A, De León RR, Lim LL, Lund MT, Millar RJ, Owen B, Penner JE, Pitari G, Prather MJ, Sausen R, Wilcox LJ. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 244:117834. [PMID: 32895604 PMCID: PMC7468346 DOI: 10.1016/j.atmosenv.2020.117834] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/02/2020] [Accepted: 07/30/2020] [Indexed: 05/04/2023]
Abstract
Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960-2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr-1, and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr-1. Over the period 2013-2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000-2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The formation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m-2 (5-95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m-2), CO2 (34.3 mW m-2), and NOx (17.5 mW m-2). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m-2. Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.
Collapse
Affiliation(s)
- D S Lee
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - D W Fahey
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO, USA
| | - A Skowron
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - M R Allen
- School of Geography and the Environment, University of Oxford, Oxford, UK
- Department of Physics, University of Oxford, Oxford, UK
| | - U Burkhardt
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | - Q Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - S J Doherty
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
| | - S Freeman
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - P M Forster
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - J Fuglestvedt
- CICERO-Center for International Climate Research-Oslo, PO Box 1129, Blindern, 0318, Oslo, Norway
| | - A Gettelman
- National Center for Atmospheric Research, Boulder, CO, USA
| | - R R De León
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - L L Lim
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - M T Lund
- CICERO-Center for International Climate Research-Oslo, PO Box 1129, Blindern, 0318, Oslo, Norway
| | - R J Millar
- School of Geography and the Environment, University of Oxford, Oxford, UK
- Committee on Climate Change, 151 Buckingham Palace Road, London, SW1W 9SZ, UK
| | - B Owen
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - J E Penner
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward St., Ann Arbor, MI, 48109-2143, USA
| | - G Pitari
- Department of Physical and Chemical Sciences, Università dell'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - M J Prather
- Department of Earth System Science, University of California, Irvine, 3329 Croul Hall, CA, 92697-3100, USA
| | - R Sausen
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | - L J Wilcox
- National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Earley Gate, Reading, RG6 6BB, UK
| |
Collapse
|
6
|
McGraw Z, Storelvmo T, Samset BH, Stjern CW. Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2020GL089056. [PMID: 33380757 PMCID: PMC7757207 DOI: 10.1029/2020gl089056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Black carbon (BC) aerosols from incomplete combustion generally warm the climate, but the magnitudes of their various interactions with climate are still uncertain. A key knowledge gap is their role as ice nucleating particles (INPs), enabling ice formation in clouds. Here we assess the global radiative impacts of BC acting as INPs, using simulations with the Community Earth System Model 2 climate model updated to include new laboratory-based ice nucleation parameterizations. Overall, we find a moderate cooling through changes to stratiform cirrus clouds, counteracting the well-known net warming from BC's direct scattering and absorption of radiation. Our best estimates indicate that BC INPs generally thin cirrus by indirectly inhibiting the freezing of solution aerosol, with a global net radiative impact of -0.13 ± 0.07 W/m2. Sensitivity tests of BC amounts and ice nucleating efficiencies, and uncertainties in the environment where ice crystals form, show a potential range of impacts from -0.30 to +0.02 W/m2.
Collapse
Affiliation(s)
| | | | | | - Camilla Weum Stjern
- Center for International Climate and Environmental Research‐Oslo (CICERO)OsloNorway
| |
Collapse
|
7
|
Bellouin N, Quaas J, Gryspeerdt E, Kinne S, Stier P, Watson‐Parris D, Boucher O, Carslaw KS, Christensen M, Daniau A, Dufresne J, Feingold G, Fiedler S, Forster P, Gettelman A, Haywood JM, Lohmann U, Malavelle F, Mauritsen T, McCoy DT, Myhre G, Mülmenstädt J, Neubauer D, Possner A, Rugenstein M, Sato Y, Schulz M, Schwartz SE, Sourdeval O, Storelvmo T, Toll V, Winker D, Stevens B. Bounding Global Aerosol Radiative Forcing of Climate Change. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:e2019RG000660. [PMID: 32734279 PMCID: PMC7384191 DOI: 10.1029/2019rg000660] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 05/04/2023]
Abstract
Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m-2, or -2.0 to -0.4 W m-2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds.
Collapse
Affiliation(s)
- N. Bellouin
- Department of MeteorologyUniversity of ReadingReadingUK
| | - J. Quaas
- Institute for MeteorologyUniversität LeipzigLeipzigGermany
| | - E. Gryspeerdt
- Space and Atmospheric Physics GroupImperial College LondonLondonUK
| | - S. Kinne
- Max Planck Institute for MeteorologyHamburgGermany
| | - P. Stier
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | - D. Watson‐Parris
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | - O. Boucher
- Institut Pierre‐Simon Laplace, Sorbonne Université/CNRSParisFrance
| | - K. S. Carslaw
- School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - M. Christensen
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | - A.‐L. Daniau
- EPOC, UMR 5805, CNRS‐Université de BordeauxPessacFrance
| | - J.‐L. Dufresne
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, Ecole Normale Supérieure, PSL Research University, Ecole PolytechniqueParisFrance
| | - G. Feingold
- NOAA ESRL Chemical Sciences DivisionBoulderCOUSA
| | - S. Fiedler
- Max Planck Institute for MeteorologyHamburgGermany
- Now at Institut für Geophysik und MeteorologieUniversität zu KölnKölnGermany
| | - P. Forster
- Priestley International Centre for ClimateUniversity of LeedsLeedsUK
| | - A. Gettelman
- National Center for Atmospheric ResearchBoulderCOUSA
| | - J. M. Haywood
- CEMPSUniversity of ExeterExeterUK
- UK Met Office Hadley CentreExeterUK
| | - U. Lohmann
- Institute for Atmospheric and Climate ScienceETH ZürichZürichSwitzerland
| | | | - T. Mauritsen
- Department of MeteorologyStockholm UniversityStockholmSweden
| | - D. T. McCoy
- School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - G. Myhre
- Center for International Climate and Environmental Research‐Oslo (CICERO)OsloNorway
| | - J. Mülmenstädt
- Institute for MeteorologyUniversität LeipzigLeipzigGermany
| | - D. Neubauer
- Institute for Atmospheric and Climate ScienceETH ZürichZürichSwitzerland
| | - A. Possner
- Department of Global EcologyCarnegie Institution for ScienceStanfordCAUSA
- Now at Institute for Atmospheric and Environmental SciencesGoethe UniversityFrankfurtGermany
| | | | - Y. Sato
- Department of Applied Energy, Graduate School of Engineering, Nagoya UniversityNagoyaJapan
- Now at Faculty of Science, Department of Earth and Planetary SciencesHokkaido UniversitySapporoJapan
| | - M. Schulz
- Climate Modelling and Air Pollution Section, Research and Development DepartmentNorwegian Meteorological InstituteOsloNorway
| | - S. E. Schwartz
- Brookhaven National Laboratory Environmental and Climate Sciences DepartmentUptonNYUSA
| | - O. Sourdeval
- Institute for MeteorologyUniversität LeipzigLeipzigGermany
- Laboratoire d'Optique AtmosphériqueUniversité de LilleVilleneuve d'AscqFrance
| | - T. Storelvmo
- Department of GeosciencesUniversity of OsloOsloNorway
| | - V. Toll
- Department of MeteorologyUniversity of ReadingReadingUK
- Now at Institute of PhysicsUniversity of TartuTartuEstonia
| | - D. Winker
- NASA Langley Research CenterHamptonVAUSA
| | - B. Stevens
- Max Planck Institute for MeteorologyHamburgGermany
| |
Collapse
|
8
|
Zhao B, Wang Y, Gu Y, Liou KN, Jiang JH, Fan J, Liu X, Huang L, Yung YL. Ice nucleation by aerosols from anthropogenic pollution. NATURE GEOSCIENCE 2019; 12:602-607. [PMID: 31360220 PMCID: PMC6662716 DOI: 10.1038/s41561-019-0389-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/15/2019] [Indexed: 05/27/2023]
Abstract
The formation of ice particles in the atmosphere strongly affects cloud properties and the climate. While mineral dust is known to be an effective ice nucleating particle, the role of aerosols from anthropogenic pollution in ice nucleation is still under debate. Here we probe the ice nucleation ability of different aerosol types by combining 11-year observations from multiple satellites and cloud-resolving model simulations. We find that, for strong convective systems, ice particle effective radius near cloud top decreases with increasing loading of polluted continental aerosols, because the ice formation is dominated by homogeneous freezing of cloud droplets that are smaller under more polluted conditions. In contrast, an increase in ice particle effective radius with polluted continental aerosols is found for moderate convection. Our model simulations suggest that this positive correlation is explained by enhanced heterogeneous ice nucleation and prolonged ice particle growth at larger aerosol loading, indicating that polluted continental aerosols contain a significant fraction of ice nucleating particles. Similar aerosol-ice relationships are observed for dust aerosols, further corroborating the ice nucleation ability of polluted continental aerosols. By catalyzing ice formation, aerosols from anthropogenic pollution could have profound impacts on cloud lifetime and radiative effect as well as precipitation efficiency.
Collapse
Affiliation(s)
- Bin Zhao
- Joint Institute for Regional Earth System Science and
Engineering and Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, California 90095, USA
| | - Yuan Wang
- Division of Geological and Planetary Sciences, California
Institute of Technology, Pasadena, California 91109, USA
- Jet propulsion Laboratory, California Institute of
Technology, Pasadena, California 91109, USA
| | - Yu Gu
- Joint Institute for Regional Earth System Science and
Engineering and Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, California 90095, USA
| | - Kuo-Nan Liou
- Joint Institute for Regional Earth System Science and
Engineering and Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, California 90095, USA
| | - Jonathan H. Jiang
- Jet propulsion Laboratory, California Institute of
Technology, Pasadena, California 91109, USA
| | - Jiwen Fan
- Atmospheric Sciences and Global Change Division, Pacific
Northwest National Laboratory, Richland, Washington 99352, USA
| | - Xiaohong Liu
- Department of Atmospheric Science, University of Wyoming,
Laramie, Wyoming 82071, USA
| | - Lei Huang
- Jet propulsion Laboratory, California Institute of
Technology, Pasadena, California 91109, USA
| | - Yuk L. Yung
- Division of Geological and Planetary Sciences, California
Institute of Technology, Pasadena, California 91109, USA
- Jet propulsion Laboratory, California Institute of
Technology, Pasadena, California 91109, USA
| |
Collapse
|
9
|
Weak average liquid-cloud-water response to anthropogenic aerosols. Nature 2019; 572:51-55. [PMID: 31367029 DOI: 10.1038/s41586-019-1423-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/24/2019] [Indexed: 11/08/2022]
Abstract
The cooling of the Earth's climate through the effects of anthropogenic aerosols on clouds offsets an unknown fraction of greenhouse gas warming. An increase in the amount of water inside liquid-phase clouds induced by aerosols, through the suppression of rain formation, has been postulated to lead to substantial cooling, which would imply that the Earth's surface temperature is highly sensitive to anthropogenic forcing. Here we provide direct observational evidence that, instead of a strong increase, aerosols cause a relatively weak average decrease in the amount of water in liquid-phase clouds compared with unpolluted clouds. Measurements of polluted clouds downwind of various anthropogenic sources-such as oil refineries, smelters, coal-fired power plants, cities, wildfires and ships-reveal that aerosol-induced cloud-water increases, caused by suppressed rain formation, and decreases, caused by enhanced evaporation of cloud water, partially cancel each other out. We estimate that the observed decrease in cloud water offsets 23% of the global climate-cooling effect caused by aerosol-induced increases in the concentration of cloud droplets. These findings invalidate the hypothesis that increases in cloud water cause a substantial climate cooling effect and translate into reduced uncertainty in projections of future climate.
Collapse
|