1
|
Brewton RA, Lapointe BE. Eutrophication leads to food web enrichment and a lack of connectivity in a highly impacted urban lagoon. MARINE POLLUTION BULLETIN 2023; 195:115441. [PMID: 37683393 DOI: 10.1016/j.marpolbul.2023.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Nitrogen (N) loading can affect estuarine food webs through alteration of primary producers. In the Indian River Lagoon (IRL), Florida there has been long-term N enrichment, worsening phytoplankton blooms, large-scale macroalgal blooms, and catastrophic seagrass losses. To investigate how N enrichment affects higher trophic levels and food webs in the IRL, nutrient availability was compared to primary producer and faunal stable N (δ15N) isotope values. Seawater samples were collected in the IRL for dissolved nutrient, chlorophyll-a, and particulate organic matter δ15N analyses. Macrophytes and fauna were also collected for δ15N analyses. Throughout the IRL, N was elevated but was highest in the northern IRL and Banana River Lagoon. δ15N was enriched in these segments for most samples to levels characteristic of human-waste impacted estuaries. Variability in δ15N among lagoon segments suggests a low level of trophic connectivity. Decreasing N loading to the IRL and other eutrophic estuaries may help improve resiliency.
Collapse
Affiliation(s)
- Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, Florida 34946, USA.
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, Florida 34946, USA
| |
Collapse
|
2
|
Heil CA, Muni-Morgan AL. Florida’s Harmful Algal Bloom (HAB) Problem: Escalating Risks to Human, Environmental and Economic Health With Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.646080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Harmful Algal Blooms (HABs) pose unique risks to the citizens, stakeholders, visitors, environment and economy of the state of Florida. Florida has been historically subjected to reoccurring blooms of the toxic marine dinoflagellate Karenia brevis (C. C. Davis) G. Hansen & Moestrup since at least first contact with explorers in the 1500’s. However, ongoing immigration of more than 100,000 people year–1 into the state, elevated population densities in coastal areas with attendant rapid, often unregulated development, coastal eutrophication, and climate change impacts (e.g., increasing hurricane severity, increases in water temperature, ocean acidification and sea level rise) has likely increased the occurrence of other HABs, both freshwater and marine, within the state as well as the number of people impacted by these blooms. Currently, over 75 freshwater, estuarine, coastal and marine HAB species are routinely monitored by state agencies. While only blooms of K. brevis, the dinoflagellate Pyrodinium bahamense (Böhm) Steidinger, Tester, and Taylor and the diatom Pseudo-nitzschia spp. have resulted in closure of commercial shellfish beds, other HAB species, including freshwater and marine cyanobacteria, pose either imminent or unknown risks to human, environmental and economic health. HAB related human health risks can be classified into those related to consumption of contaminated shellfish and finfish, consumption of or contact with bloom or toxin contaminated water or exposure to aerosolized HAB toxins. While acute human illnesses resulting from consumption of brevetoxin-, saxitoxin-, and domoic acid-contaminated commercial shellfish have been minimized by effective monitoring and regulation, illnesses due to unregulated toxin exposures, e.g., ciguatoxins and cyanotoxins, are not well documented or understood. Aerosolized HAB toxins potentially impact the largest number of people within Florida. While short-term (days to weeks) impacts of aerosolized brevetoxin exposure are well documented (e.g., decreased respiratory function for at-risk subgroups such as asthmatics), little is known of longer term (>1 month) impacts of exposure or the risks posed by aerosolized cyanotoxin [e.g., microcystin, β-N-methylamino-L-alanine (BMAA)] exposure. Environmental risks of K. brevis blooms are the best studied of Florida HABs and include acute exposure impacts such as significant dies-offs of fish, marine mammals, seabirds and turtles, as well as negative impacts on larval and juvenile stages of many biota. When K. brevis blooms are present, brevetoxins can be found throughout the water column and are widespread in both pelagic and benthic biota. The presence of brevetoxins in living tissue of both fish and marine mammals suggests that food web transfer of these toxins is occurring, resulting in toxin transport beyond the spatial and temporal range of the bloom such that impacts of these toxins may occur in areas not regularly subjected to blooms. Climate change impacts, including temperature effects on cell metabolism, shifting ocean circulation patterns and changes in HAB species range and bloom duration, may exacerbate these dynamics. Secondary HAB related environmental impacts are also possible due to hypoxia and anoxia resulting from elevated bloom biomass and/or the decomposition of HAB related mortalities. Economic risks related to HABs in Florida are diverse and impact multiple stakeholder groups. Direct costs related to human health impacts (e.g., increased hospital visits) as well as recreational and commercial fisheries can be significant, especially with wide-spread sustained HABs. Recreational and tourism-based industries which sustain a significant portion of Florida’s economy are especially vulnerable to both direct (e.g., declines in coastal hotel occupancy rates and restaurant and recreational users) and indirect (e.g., negative publicity impacts, associated job losses) impacts from HABs. While risks related to K. brevis blooms are established, Florida also remains susceptible to future HABs due to large scale freshwater management practices, degrading water quality, potential transport of HABs between freshwater and marine systems and the state’s vulnerability to climate change impacts.
Collapse
|
3
|
Red Sea MODIS Estimates of Chlorophyll a and Phytoplankton Biomass Risks to Saudi Arabian Coastal Desalination Plants. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse9010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Harmful algal blooms (HABs) and the high biomass associated with them have afflicted marine desalination plants along coastal regions around the world. Few studies of HABs have been conducted in the Red Sea, where desalination plants along the Saudi Arabian Red Sea coast provide drinking water for millions of people. This study was conducted along the Saudi Arabian Red Sea coast from 2014 to 2015 to assess the potential for using Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing of chlorophyll a (Chl a) or fluorescence line height (FLH) to identify risks for biofouling at these desalination plants. Ship-based surveys of phytoplankton were conducted along the Saudi Arabian coastline offshore of desalination plants at Jeddah, Al Shoaibah and Al Qunfudhuh to assess the density of phytoplankton populations and identify any potential HAB species. Ship-based surveys showed low to moderate concentrations of phytoplankton, averaging from 1800–10,000 cells L−1 at Jeddah, 2000–11,000 cells L−1 at Al Shoaibah and 1000–20,500 cells L−1 at Al Qunfudhuh. Sixteen different species of potentially toxigenic HABs were identified through these surveys. There was a good relationship between ship-based total phytoplankton counts and monthly averaged coastal MODIS Chl a (R2 = 0.49, root mean square error (RMSE) = 0.27 mg m−3) or FLH (R2 = 0.47, RMSE = 0.04 mW m−2 µm−1 sr−1) values. Monthly average near shore Chl a concentrations obtained using MODIS satellite imagery were much higher in the Red Sea coastal areas at Al Qunfudhuh (maximum of about 1.3 mg m−3) than at Jeddah or Al Shoaibah (maximum of about 0.4 and 0.5 mg m−3, respectively). Chlorophyll a concentrations were generally highest from the months of December to March, producing higher risks of biofouling desalination plants than in other months. Concentrations decreased significantly, on average, from April to September. Long-term (2005–2016) monthly averaged MODIS Chl a values were used to delineate four statistically distinct zones of differing HAB biomass across the entire Red Sea. Sinusoidal functions representing monthly variability were fit to satellite Chl a values in each zone (RMSE values from 0.691 to 0.07 mg m−3, from Zone 1 to 4). December to January mean values and annual amplitudes for Chl a in these four sinusoidal functions decreased from Zones 1–4. In general, the greatest risk of HABs to desalination occurs during winter months in Zone 1 (Southern Red Sea), while HAB risks to desalination plants in winter months are low to moderate in Zone 2 (South Central Red Sea), and negligible in Zones 3 (North Central) and 4 (Northern).
Collapse
|
4
|
Rodríguez-Benito CV, Navarro G, Caballero I. Using Copernicus Sentinel-2 and Sentinel-3 data to monitor harmful algal blooms in Southern Chile during the COVID-19 lockdown. MARINE POLLUTION BULLETIN 2020; 161:111722. [PMID: 33039790 PMCID: PMC7544481 DOI: 10.1016/j.marpolbul.2020.111722] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 05/20/2023]
Abstract
During the southern summer of 2020, large phytoplankton blooms were detected using satellite technology in Chile (western Patagonia), where intensive salmonid aquaculture is carried out. Some harvesting sites recorded massive fish mortalities, which were associated with the presence of the dinoflagellate species Cochlodinium sp. The bloom included other phytoplankton species, as Lepidodinium chlorophorum, which persistently changed the colour of the ocean to green. These blooms coincided with the government-managed emergency lockdown due to the COVID-19 pandemic. Local in situ sampling was slowed down. However, imagery from the Copernicus programme allowed operational monitoring. This study shows the benefits of both Sentinel-3 and Sentinel-2 satellites in terms of their spectral, spatial and temporal capabilities for improved algal bloom monitoring. These novel tools, which can foster optimal decision-making, are available for delivering early alerts in situations of natural catastrophes and blockages, such as those occurred during the global COVID-19 lockdown.
Collapse
Affiliation(s)
| | - Gabriel Navarro
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real 11510, Cádiz, Spain
| | - Isabel Caballero
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real 11510, Cádiz, Spain.
| |
Collapse
|