Walach M, Grocott A, Thomas EG, Staples F. Dusk-Dawn Asymmetries in SuperDARN Convection Maps.
JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2022;
127:e2022JA030906. [PMID:
37032659 PMCID:
PMC10078218 DOI:
10.1029/2022ja030906]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
The Super Dual Auroral Radar Network (SuperDARN) is a collection of radars built to study ionospheric convection. We use a 7-year archive of SuperDARN convection maps, processed in 3 different ways, to build a statistical understanding of dusk-dawn asymmetries in the convection patterns. We find that the data set processing alone can introduce a bias which manifests itself in dusk-dawn asymmetries. We find that the solar wind clock angle affects the balance in the strength of the convection cells. We further find that the location of the positive potential foci is most likely observed at latitudes of 78° for long periods (>300 min) of southward interplanetary magnetic field (IMF), as opposed to 74° for short periods (<20 min) of steady IMF. For long steady dawnward IMF the median is also at 78°. For long steady periods of duskward IMF, the positive potential foci tends to be at lower latitudes than the negative potential and vice versa during dawnward IMF. For long periods of steady Northward IMF, the positive and negative cells can swap sides in the convection pattern. We find that they move from ∼0-9 MLT to 15 MLT or ∼15-23 MLT to 10 MLT, which reduces asymmetry in the average convection cell locations for Northward IMF. We also investigate the width of the region in which the convection returns to the dayside, the return flow width. Asymmetries in this are not obvious, until we select by solar wind conditions, when the return flow region is widest for the negative convection cell during Southward IMF.
Collapse