1
|
Kyriou A, Nikolakopoulos KG. Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption-The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain. SENSORS (BASEL, SWITZERLAND) 2022; 22:8768. [PMID: 36433367 PMCID: PMC9695005 DOI: 10.3390/s22228768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Volcanic eruptions pose a great threat to humans. In this context, volcanic hazard and risk assessment constitute crucial issues with respect to mitigating the effects of volcanic activity and ensuring the health and safety of inhabitants. Lava flows directly affect communities living near active volcanoes. Nowadays, remote sensing advances make it possible to effectively monitor eruptive activity, providing immediate and accurate information concerning lava evolution. The current research focuses on the mapping of the surface deformation and the analysis of lava flow evolution occurred on the island of La Palma, during the recent (2021) eruptive phase of the volcano. Sentinel-1 data covering the island were collected throughout the entire eruptive period, i.e., September 2021 until January 2022. The processing was based on amplitude-based and phase-based detection methods, i.e., Synthetic Aperture Radar interferometry (InSAR) and offset tracking. In particular, ground deformation occurred on the island, while Line-Of-Sight (LOS) displacements were derived from Sentinel-1 interferograms. Moreover, the evolution of lava flow velocity was estimated using Sentinel-1 imagery along with offset tracking technique. The maximum lava flow velocity was calculated to be 2 m/day. It was proved that both approaches can provide rapid and useful information in emergencies, especially in inaccessible areas. Although offset tracking seems a quite promising technique for the mapping of lava flows, it still requires improvement.
Collapse
|
2
|
Rewinding the molecular clock in the genus Carabus (Coleoptera: Carabidae) in light of fossil evidence and the Gondwana split: A reanalysis. PLoS One 2021; 16:e0256679. [PMID: 34550988 PMCID: PMC8457462 DOI: 10.1371/journal.pone.0256679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022] Open
Abstract
Molecular clocks have become powerful tools given increasing sequencing and fossil resources. However, calibration analyses outcomes depend on the choice of priors. Here, we revisited the seminal dating study published by Andújar and coworkers of the genus Carabus proposing that prior choices need re-evaluation. We hypothesized that reflecting fossil evidence and the Gondwanan split properly significantly rewinds the molecular clock. We re-used the dataset including five mitochondrial and four nuclear DNA fragments with a total length of 7888 nt. Fossil evidence for Oligocene occurrence of Calosoma was considered. Root age was set based on the fossil evidence of Harpalinae ground beetles in the Upper Cretaceous. Paleogene divergence of the outgroup taxa Ceroglossini and Pamborini is introduced as a new prior based on current paleontological and geological literature. The ultrametric time-calibrated tree of the extended nd5 dataset resulted in a median TMRCA Carabus of 53.92 Ma (HPD 95% 45.01–63.18 Ma), roughly 30 Ma older than in the Andújar study. The splits among C. rugosus and C. morbillosus (A), C. riffensis from the European Mesocarabus (B), and Eurycarabus and Nesaeocarabus (C) were dated to 17.58 (12.87–22.85), 24.14 (18.02–30.58), and 21.6 (16.44–27.43) Ma. They were decidedly older than those previously reported (7.48, 10.93, and 9.51 Ma). These changes were driven almost entirely by constraining the Carabidae time-tree root with a Harpalinae amber fossil at ~99 Ma. Utilizing the nd5 dating results of three well-supported Carabus clades as secondary calibration points for the complete MIT-NUC dataset led to a TMRCA of Carabus of 44.72 (37.54–52.22) Ma, compared with 25.16 Ma (18.41–33.04 Ma) in the previous study. Considering fossil evidence for Oligocene Calosoma and Late Cretaceous Harpalini together with the Gondwanan split as a new prior, our new approach supports the origin of genus Carabus in the Eocene. Our results are preliminary because of the heavy reliance on the nd5 gene, and thus will have to be tested with a sufficient set of nuclear markers. Additionally, uncertainties due to dating root age of the tree based on a single fossil and outgroup taxon affect the results. Improvement of the fossil database, particularly in the supertribe Carabitae, is needed to reduce these uncertainties in dating Carabus phylogeny.
Collapse
|
3
|
Herrera C, Custodio E. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:531-550. [PMID: 25108255 DOI: 10.1016/j.scitotenv.2014.07.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 gm(-2)year(-1) of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may exist.
Collapse
Affiliation(s)
- Christian Herrera
- Universidad Católica del Norte, Av. Angamos 0610, Antofagasta, Chile.
| | - Emilio Custodio
- Department of Geo-Engineering, Technical University of Catalonia (UPC), Barcelona, Spain
| |
Collapse
|
4
|
|
5
|
Emerson BC, Oromí P. Diversification of the forest beetle genus Tarphius on the Canary Islands, and the evolutionary origins of island endemics. Evolution 2005; 59:586-98. [PMID: 15856701 DOI: 10.1554/04-342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The flightless beetle genus Tarphius Erichson (Coleoptera: Colydiidae) is a distinctive element of the beetle fauna of the Canary Islands with 29 species distributed across the five western islands. The majority of Tarphius species are rare and intimately associated with the monteverde forest and only two species occur on more than one island. In this study we investigate the phylogeography of the Canary Island Tarphius, and their relationship to Tarphius from the more northerly archipelagos of Madeira and the Azores using maximum parsimony and Bayesian inference analysis of mitochondrial cytochrome oxidase I and II sequence data. We use geological datings for the Canary Islands, Azores, and Madeira to calibrate specific nodes of the tree for the estimation of divergence times using a penalized likelihood method. Data suggest that the Canary Island species assemblage is of some antiquity, however, much of this species diversity is relatively recent in origin. The phylogenetic relationships of species inhabiting the younger islands of El Hierro and La Palma indicate that colonization events between islands have probably been a significant factor in the evolutionary history of the Canary Island species assemblage. A comparison of molecular phylogenetic studies of arthropods on the Canary Islands suggests that, in the evolution of the arthropod species community of an island, the origin of endemic species is initially the result of colonizing lineages differentiating from their source populations. However, as an island matures a greater proportion of endemic species originate from intra-island speciation.
Collapse
Affiliation(s)
- Brent C Emerson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| | | |
Collapse
|
6
|
Phipps Morgan J, Morgan WJ, Price E. Hotspot melting generates both hotspot volcanism and a hotspot swell? ACTA ACUST UNITED AC 2004. [DOI: 10.1029/94jb02887] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Roeser HA, Steiner C, Schreckenberger B, Block M. Structural development of the Jurassic Magnetic Quiet Zone off Morocco and identification of Middle Jurassic magnetic lineations. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000jb000094] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- H. A. Roeser
- Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany
| | | | | | - M. Block
- Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany
| |
Collapse
|
8
|
Emerson BC, Oromí P, Hewitt GM. Interpreting colonization of the Calathus (Coleoptera: Carabidae) on the Canary Islands and Madeira through the application of the parametric bootstrap. Evolution 2000; 54:2081-90. [PMID: 11209784 DOI: 10.1111/j.0014-3820.2000.tb01251.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Canary Islands have proven to be an interesting archipelago for the phylogeographic study of colonization and diversification with a number of recent studies reporting evolutionary patterns and processes across a diversity of floral and faunal groups. The Canary Islands differ from the Hawaiian and Galapagos Islands by their close proximity to a continental land mass, being 110 km from the northwestern coast of Africa. This close proximity to a continent obviously increases the potential for colonization, and it can be expected that at the level of the genus some groups will be the result of more than one colonization. In this study we investigate the phylogeography of a group of carabid beetles from the genus Calathus on the Canary Islands and Madeira, located 450 km to the north of the Canaries and 650 km from the continent. The Calathus are well represented on these islands with a total of 29 species, and on the continent there are many more. Mitochondrial cytochrome oxidase I and II sequence data has been used to identify the phylogenetic relationships among the island species and a selection of continental species. Specific hypotheses of monophyly for the island fauna are tested with parametric bootstrap analysis. Data suggest that the Canary Islands have been colonized three times and Madeira twice. Four of these colonizations are of continental origin, but it is possible that one Madeiran clade may be monophyletic with a Canarian clade. The Calathus faunas of Tenerife and Madeira are recent in origin, similar to patterns previously reported for La Gomera, El Hierro, and Gran Canaria.
Collapse
Affiliation(s)
- B C Emerson
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.
| | | | | |
Collapse
|
9
|
Juan I, Emerson BC, Orom I, Hewitt GM. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol Evol 2000; 15:104-109. [PMID: 10675925 DOI: 10.1016/s0169-5347(99)01776-0] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, the Canary Islands have become a focus for studies of the colonization and the diversification of different organisms. Some authors have considered Canarian endemisms as relicts of Tertiary origin, but new molecular data suggest a general pattern of continental dispersion followed by in situ speciation. Recent phylogeographic studies are revealing variants of the simple stepping-stone colonization model that seems to hold for many Hawaiian groups. Many factors can generate deviations from such a pattern: the stochastic nature of colonization, competitive exclusion, phylogenetic constraints on adaptive evolution and extinction. An understanding of island colonization and diversification can best be developed from an ecosystem level synthesis as more data for the Canarian archipelago come to hand.
Collapse
|
10
|
Emerson BC, Oromí P, Hewitt GM. INTERPRETING COLONIZATION OF THE CALATHUS (COLEOPTERA: CARABIDAE) ON THE CANARY ISLANDS AND MADEIRA THROUGH THE APPLICATION OF THE PARAMETRIC BOOTSTRAP. Evolution 2000. [DOI: 10.1554/0014-3820(2000)054[2081:icotcc]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Emerson BC, Oromí P, Hewitt GM. MtDNA phylogeography and recent intra-island diversification among Canary Island Calathus beetles. Mol Phylogenet Evol 1999; 13:149-58. [PMID: 10508548 DOI: 10.1006/mpev.1999.0644] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Calathus Bonelli comprises 24 species on the Canary Islands. Sequences of 927 and 687 bp of the mitochondrial cytochrome oxidase I and II genes, respectively, as well as the intervening tRNA leu gene in 21 of the 24 species, have identified three genetically divergent and unequivocally monophyletic groupings. A phylogeographic analysis is presented for the major monophyletic group comprising all the species of Gran Canaria, La Gomera, and El Hierro, and two Tenerifean species. A distance-based phylogenetic analysis and maximum parsimony analysis have clearly shown that this clade is composed of four distinct lineages. DNA sequence data suggest a recent origin for this clade and that lineages have not evolved at the same rate. Compared with diversification patterns observed in other Coleoptera on the Canary Islands, diversification has been recent relative to the time of colonization within the islands of Gran Canaria and La Gomera. Calathus diversification on La Gomera has been greater than on Gran Canaria. The influences of geological and ecological history are discussed in relation to Calathus diversification.
Collapse
Affiliation(s)
- B C Emerson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | |
Collapse
|
12
|
Canas JA, Ugalde A, Pujades LG, Carracedo JC, Soler V, Blanco MJ. Intrinsic and scattering seismic wave attenuation in the Canary Islands. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98jb00769] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Carracedo JC. A simple model for the genesis of large gravitational landslide hazards in the Canary Islands. ACTA ACUST UNITED AC 1996. [DOI: 10.1144/gsl.sp.1996.110.01.10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Hoernle K, Zhang YS, Graham D. Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 1995. [DOI: 10.1038/374034a0] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|