1
|
Shen Y, Verkhoglyadova OP, Artemyev A, Hartinger MD, Angelopoulos V, Shi X, Zou Y. Magnetospheric Control of Ionospheric TEC Perturbations via Whistler-Mode and ULF Waves. AGU ADVANCES 2024; 5:e2024AV001302. [PMID: 39606591 PMCID: PMC11600791 DOI: 10.1029/2024av001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra-low-frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground-based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF-modulated whistler-mode waves. We observed peak-to-peak dTEC amplitudes reaching∼ 0.5 TECU (1 TECU is equal to10 6 electrons/m 2 ) with modulations spanning scales of∼ 5-100 km. The cross-correlation between our modeled and observed dTEC reached∼ 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler-mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high-latitude dTEC generation from magnetospheric wave-induced precipitation, addressing a significant gap in current physics-based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere-ionosphere coupling via ULF waves.
Collapse
Affiliation(s)
- Yangyang Shen
- Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesCAUSA
| | | | - Anton Artemyev
- Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesCAUSA
| | - Michael D. Hartinger
- Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesCAUSA
- Space Science InstituteCenter for Space Plasma PhysicsBoulderCOUSA
| | - Vassilis Angelopoulos
- Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesCAUSA
| | - Xueling Shi
- Department of Electrical and Computer EngineeringVirginia TechBlacksburgVAUSA
| | - Ying Zou
- Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| |
Collapse
|
2
|
Gamayunov KV, Engebretson MJ. Low Frequency ULF Waves in the Earth's Inner Magnetosphere: Power Spectra During High Speed Streams and Quiet Solar Wind and Seeding of EMIC Waves. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2022; 127:e2022JA030647. [PMID: 36591599 PMCID: PMC9788274 DOI: 10.1029/2022ja030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Here, we extend the scope of the Gamayunov and Engebretson (2021, hereinafter Paper 1), https://doi.org/10.1029/2021JA029247 work by analyzing the low frequency ultra-low-frequency (ULF) wave power spectra in the Earth's inner magnetosphere during high speed stream (HSS) and quiet solar wind (QSW) driving conditions in the upstream solar wind (SW) and comparing our results to the results of Paper 1, where the statistics of ULF wave power spectra during coronal mass ejections (CMEs) are presented. The most important results of our statistical and comparative analyses are as follows. (a) During CMEs, HSSs, and QSW, the magnetic field power spectra of the transverse and compressional fluctuations are well approximated by power laws in the ∼mHz-Hz frequency range, where on average the parameters of power law fits during CMEs and HSSs are close, and those during QSW differ considerably from the respective parameters during CMEs and HSSs. (b) The dominance of the average compressional power over the average transverse power for the low frequency ULF waves during the 0 < SYM/H ≲ 25 nT geomagnetic conditions may serve as a proxy of HSSs in the upstream SW, whereas the opposite relation between the average powers is an indication of CMEs. (c) Independently of the SW driving conditions, a turbulent energy cascade from low frequencies in the ULF wave frequency range into the higher frequency range exists in the Earth's inner magnetosphere, supplying the nonthermal electromagnetic seed fluctuations needed for the growth of electromagnetic ion cyclotron waves (∼Hz) due to relaxation of unstable distributions of energetic magnetospheric ions.
Collapse
Affiliation(s)
- Konstantin V. Gamayunov
- Department of Aerospace, Physics and Space SciencesFlorida Institute of TechnologyMelbourneFLUSA
| | | |
Collapse
|
3
|
Nosé M, Matsuoka A, Kumamoto A, Kasahara Y, Teramoto M, Kurita S, Goldstein J, Kistler LM, Singh S, Gololobov A, Shiokawa K, Imajo S, Oimatsu S, Yamamoto K, Obana Y, Shoji M, Tsuchiya F, Shinohara I, Miyoshi Y, Kurth WS, Kletzing CA, Smith CW, MacDowall RJ, Spence H, Reeves GD. Oxygen torus and its coincidence with EMIC wave in the deep inner magnetosphere: Van Allen Probe B and Arase observations. EARTH, PLANETS, AND SPACE : EPS 2020; 72:111. [PMID: 32831576 PMCID: PMC7410109 DOI: 10.1186/s40623-020-01235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
We investigate the longitudinal structure of the oxygen torus in the inner magnetosphere for a specific event found on 12 September 2017, using simultaneous observations from the Van Allen Probe B and Arase satellites. It is found that Probe B observed a clear enhancement in the average plasma mass (M) up to 3-4 amu at L = 3.3-3.6 and magnetic local time (MLT) = 9.0 h. In the afternoon sector at MLT ~ 16.0 h, both Probe B and Arase found no clear enhancements in M. This result suggests that the oxygen torus does not extend over all MLT but is skewed toward the dawn. Since a similar result has been reported for another event of the oxygen torus in a previous study, a crescent-shaped torus or a pinched torus centered around dawn may be a general feature of the O+ density enhancement in the inner magnetosphere. We newly find that an electromagnetic ion cyclotron (EMIC) wave in the H+ band appeared coincidently with the oxygen torus. From the lower cutoff frequency of the EMIC wave, the ion composition of the oxygen torus is estimated to be 80.6% H+, 3.4% He+, and 16.0% O+. According to the linearized dispersion relation for EMIC waves, both He+ and O+ ions inhibit EMIC wave growth and the stabilizing effect is stronger for He+ than O+. Therefore, when the H+ fraction or M is constant, the denser O+ ions are naturally accompanied by the more tenuous He+ ions, resulting in a weaker stabilizing effect (i.e., larger growth rate). From the Probe B observations, we find that the growth rate becomes larger in the oxygen torus than in the adjacent regions in the plasma trough and the plasmasphere.
Collapse
Affiliation(s)
- M. Nosé
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - A. Matsuoka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - A. Kumamoto
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Y. Kasahara
- Advanced Research Center for Space Science and Technology, Kanazawa University, Kanazawa, Japan
| | - M. Teramoto
- Department of Space Systems Engineering, Kyushu Institute of Technology, Kitakyusyu, Japan
| | - S. Kurita
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - J. Goldstein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX USA
- University of Texas at San Antonio, San Antonio, TX USA
| | - L. M. Kistler
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
| | - S. Singh
- Indian Institute of Geomagnetism, Navi Mumbai, India
| | - A. Gololobov
- North-Eastern Federal University, Yakutsk, Russia
| | - K. Shiokawa
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - S. Imajo
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - S. Oimatsu
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - K. Yamamoto
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Y. Obana
- Faculty of Engineering, Osaka Electro-Communication University, Neyagawa, Japan
| | - M. Shoji
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - F. Tsuchiya
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - I. Shinohara
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Y. Miyoshi
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - W. S. Kurth
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA USA
| | - C. A. Kletzing
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA USA
| | - C. W. Smith
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
| | - R. J. MacDowall
- Solar System Exploration Division, Goddard Space Flight Center, Greenbelt, MD USA
| | - H. Spence
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
| | - G. D. Reeves
- Space Sciences and Applications Group, Los Alamos National Laboratory, Los Alamos, NM USA
| |
Collapse
|
4
|
Murphy KR, Inglis AR, Sibeck DG, Rae IJ, Watt CEJ, Silveira M, Plaschke F, Claudepierre SG, Nakamura R. Determining the Mode, Frequency, and Azimuthal Wave Number of ULF Waves During a HSS and Moderate Geomagnetic Storm. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2018; 123:6457-6477. [PMID: 31681521 PMCID: PMC6813628 DOI: 10.1029/2017ja024877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 06/10/2023]
Abstract
Ultralow frequency (ULF) waves play a fundamental role in the dynamics of the inner magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion, and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale mission, we characterize the evolution of ULF waves during a high-speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the Magnetospheric Multiscale spacecraft, we estimate the toroidal mode ULF azimuthal wave number throughout the geomagnetic storm. We concentrate on the toroidal mode as the HSS compresses the dayside magnetosphere resulting in an asymmetric magnetic field topology where toroidal mode waves can interact with energetic electrons. Analysis of the mode structure and wave numbers demonstrates that the generation of the observed ULF waves is a combination of externally driven waves, via the Kelvin-Helmholtz instability, and internally driven waves, via unstable ion distributions. Further analysis of the periods and toroidal azimuthal wave numbers suggests that these waves can couple with the core electron radiation belt population via the drift resonance during the storm. The azimuthal wave number and structure of ULF wave power (broadband or discrete) have important implications for the inner magnetospheric and radiation belt dynamics.
Collapse
Affiliation(s)
- Kyle R. Murphy
- Department of AstronomyUniversity of MarylandCollege ParkMDUSA
| | | | - David G. Sibeck
- NASA Goddard Space Flight Center, Space Weather Laboratory (674)GreenbeltMDUSA
| | - I. Jonathan Rae
- Department of Space and Climate Physics, Mullard Space Science LaboratoryUniversity College LondonLondonUK
| | | | | | | | | | - Rumi Nakamura
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| |
Collapse
|
5
|
Borovsky JE, Valdivia JA. The Earth's Magnetosphere: A Systems Science Overview and Assessment. SURVEYS IN GEOPHYSICS 2018; 39:817-859. [PMID: 30956375 PMCID: PMC6428226 DOI: 10.1007/s10712-018-9487-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/07/2018] [Indexed: 05/20/2023]
Abstract
A systems science examination of the Earth's fully interconnected dynamic magnetosphere is presented. Here the magnetospheric system (a.k.a. the magnetosphere-ionosphere-thermosphere system) is considered to be comprised of 14 interconnected subsystems, where each subsystem is a characteristic particle population: 12 of those particle populations are plasmas and two (the atmosphere and the hydrogen geocorona) are neutrals. For the magnetospheric system, an assessment is made of the applicability of several system descriptors, such as adaptive, nonlinear, dissipative, interdependent, open, irreversible, and complex. The 14 subsystems of the magnetospheric system are cataloged and described, and the various types of magnetospheric waves that couple the behaviors of the subsystems to each other are explained. This yields a roadmap of the connectivity of the magnetospheric system. Various forms of magnetospheric activity beyond geomagnetic activity are reviewed, and four examples of emergent phenomena in the Earth's magnetosphere are presented. Prior systems science investigations of the solar-wind-driven magnetospheric system are discussed: up to the present these investigations have not accounted for the full interconnectedness of the system. This overview and assessment of the Earth's magnetosphere hopes to facilitate (1) future global systems science studies that involve the entire interconnected magnetospheric system with its diverse time and spatial scales and (2) connections of magnetospheric systems science with the broader Earth systems science.
Collapse
Affiliation(s)
- Joseph E. Borovsky
- Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 USA
| | | |
Collapse
|
6
|
Ozeke LG, Mann IR, Murphy KR, Jonathan Rae I, Milling DK. Analytic expressions for ULF wave radiation belt radial diffusion coefficients. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2014; 119:1587-1605. [PMID: 26167440 PMCID: PMC4497482 DOI: 10.1002/2013ja019204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 05/28/2023]
Abstract
We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV-even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. KEY POINTS Analytic expressions for the radial diffusion coefficients are presentedThe coefficients do not dependent on energy or wave m valueThe electric field diffusion coefficient dominates over the magnetic.
Collapse
Affiliation(s)
- Louis G Ozeke
- Department of Physics, University of AlbertaEdmonton, Alberta, Canada
| | - Ian R Mann
- Department of Physics, University of AlbertaEdmonton, Alberta, Canada
| | - Kyle R Murphy
- Department of Physics, University of AlbertaEdmonton, Alberta, Canada
| | - I Jonathan Rae
- Department of Physics, University of AlbertaEdmonton, Alberta, Canada
- Mullard Space Science LaboratoryDorking, UK
| | - David K Milling
- Department of Physics, University of AlbertaEdmonton, Alberta, Canada
| |
Collapse
|