1
|
Nosé M, Matsuoka A, Kumamoto A, Kasahara Y, Teramoto M, Kurita S, Goldstein J, Kistler LM, Singh S, Gololobov A, Shiokawa K, Imajo S, Oimatsu S, Yamamoto K, Obana Y, Shoji M, Tsuchiya F, Shinohara I, Miyoshi Y, Kurth WS, Kletzing CA, Smith CW, MacDowall RJ, Spence H, Reeves GD. Oxygen torus and its coincidence with EMIC wave in the deep inner magnetosphere: Van Allen Probe B and Arase observations. EARTH, PLANETS, AND SPACE : EPS 2020; 72:111. [PMID: 32831576 PMCID: PMC7410109 DOI: 10.1186/s40623-020-01235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
We investigate the longitudinal structure of the oxygen torus in the inner magnetosphere for a specific event found on 12 September 2017, using simultaneous observations from the Van Allen Probe B and Arase satellites. It is found that Probe B observed a clear enhancement in the average plasma mass (M) up to 3-4 amu at L = 3.3-3.6 and magnetic local time (MLT) = 9.0 h. In the afternoon sector at MLT ~ 16.0 h, both Probe B and Arase found no clear enhancements in M. This result suggests that the oxygen torus does not extend over all MLT but is skewed toward the dawn. Since a similar result has been reported for another event of the oxygen torus in a previous study, a crescent-shaped torus or a pinched torus centered around dawn may be a general feature of the O+ density enhancement in the inner magnetosphere. We newly find that an electromagnetic ion cyclotron (EMIC) wave in the H+ band appeared coincidently with the oxygen torus. From the lower cutoff frequency of the EMIC wave, the ion composition of the oxygen torus is estimated to be 80.6% H+, 3.4% He+, and 16.0% O+. According to the linearized dispersion relation for EMIC waves, both He+ and O+ ions inhibit EMIC wave growth and the stabilizing effect is stronger for He+ than O+. Therefore, when the H+ fraction or M is constant, the denser O+ ions are naturally accompanied by the more tenuous He+ ions, resulting in a weaker stabilizing effect (i.e., larger growth rate). From the Probe B observations, we find that the growth rate becomes larger in the oxygen torus than in the adjacent regions in the plasma trough and the plasmasphere.
Collapse
Affiliation(s)
- M. Nosé
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - A. Matsuoka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - A. Kumamoto
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Y. Kasahara
- Advanced Research Center for Space Science and Technology, Kanazawa University, Kanazawa, Japan
| | - M. Teramoto
- Department of Space Systems Engineering, Kyushu Institute of Technology, Kitakyusyu, Japan
| | - S. Kurita
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - J. Goldstein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX USA
- University of Texas at San Antonio, San Antonio, TX USA
| | - L. M. Kistler
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
| | - S. Singh
- Indian Institute of Geomagnetism, Navi Mumbai, India
| | - A. Gololobov
- North-Eastern Federal University, Yakutsk, Russia
| | - K. Shiokawa
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - S. Imajo
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - S. Oimatsu
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - K. Yamamoto
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Y. Obana
- Faculty of Engineering, Osaka Electro-Communication University, Neyagawa, Japan
| | - M. Shoji
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - F. Tsuchiya
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - I. Shinohara
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan
| | - Y. Miyoshi
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - W. S. Kurth
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA USA
| | - C. A. Kletzing
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA USA
| | - C. W. Smith
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
| | - R. J. MacDowall
- Solar System Exploration Division, Goddard Space Flight Center, Greenbelt, MD USA
| | - H. Spence
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH USA
| | - G. D. Reeves
- Space Sciences and Applications Group, Los Alamos National Laboratory, Los Alamos, NM USA
| |
Collapse
|
2
|
Antonova EE, Vorobjev VG, Kirpichev IP, Yagodkina OI, Stepanova MV. Problems with mapping the auroral oval and magnetospheric substorms. EARTH, PLANETS, AND SPACE : EPS 2015; 67:166. [PMID: 27656099 PMCID: PMC5012350 DOI: 10.1186/s40623-015-0336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/01/2015] [Indexed: 06/06/2023]
Abstract
Accurate mapping of the auroral oval into the equatorial plane is critical for the analysis of aurora and substorm dynamics. Comparison of ion pressure values measured at low altitudes by Defense Meteorological Satellite Program (DMSP) satellites during their crossings of the auroral oval, with plasma pressure values obtained at the equatorial plane from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite measurements, indicates that the main part of the auroral oval maps into the equatorial plane at distances between 6 and 12 Earth radii. On the nightside, this region is generally considered to be a part of the plasma sheet. However, our studies suggest that this region could form part of the plasma ring surrounding the Earth. We discuss the possibility of using the results found here to explain the ring-like shape of the auroral oval, the location of the injection boundary inside the magnetosphere near the geostationary orbit, presence of quiet auroral arcs in the auroral oval despite the constantly high level of turbulence observed in the plasma sheet, and some features of the onset of substorm expansion.
Collapse
Affiliation(s)
- E. E. Antonova
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
| | - V. G. Vorobjev
- Polar Geophysical Institute, Apatity, Murmansk Region Russia
| | | | - O. I. Yagodkina
- Polar Geophysical Institute, Apatity, Murmansk Region Russia
| | - M. V. Stepanova
- Physics Department, Science Faculty, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Kozyra JU, Liemohn MW, Clauer CR, Ridley AJ, Thomsen MF, Borovsky JE, Roeder JL, Jordanova VK, Gonzalez WD. MultistepDstdevelopment and ring current composition changes during the 4-6 June 1991 magnetic storm. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001ja000023] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. U. Kozyra
- Space Physics Research Laboratory; University of Michigan; Ann Arbor Michigan USA
| | - M. W. Liemohn
- Space Physics Research Laboratory; University of Michigan; Ann Arbor Michigan USA
| | - C. R. Clauer
- Space Physics Research Laboratory; University of Michigan; Ann Arbor Michigan USA
| | - A. J. Ridley
- Space Physics Research Laboratory; University of Michigan; Ann Arbor Michigan USA
| | - M. F. Thomsen
- Space and Atmospheric Science Division; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - J. E. Borovsky
- Space and Atmospheric Science Division; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - J. L. Roeder
- The Aerospace Corporation; El Segundo California USA
| | - V. K. Jordanova
- Space Science Center; University of New Hampshire; Durham New Hampshire USA
| | - W. D. Gonzalez
- Instituto de Pesquisas Especiais; São José dos Campos; São Paulo Brazil
| |
Collapse
|