1
|
Zhang H, Zong Q, Connor H, Delamere P, Facskó G, Han D, Hasegawa H, Kallio E, Kis Á, Le G, Lembège B, Lin Y, Liu T, Oksavik K, Omidi N, Otto A, Ren J, Shi Q, Sibeck D, Yao S. Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere. SPACE SCIENCE REVIEWS 2022; 218:40. [PMID: 35784192 PMCID: PMC9239986 DOI: 10.1007/s11214-021-00865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Dayside transients, such as hot flow anomalies, foreshock bubbles, magnetosheath jets, flux transfer events, and surface waves, are frequently observed upstream from the bow shock, in the magnetosheath, and at the magnetopause. They play a significant role in the solar wind-magnetosphere-ionosphere coupling. Foreshock transient phenomena, associated with variations in the solar wind dynamic pressure, deform the magnetopause, and in turn generates field-aligned currents (FACs) connected to the auroral ionosphere. Solar wind dynamic pressure variations and transient phenomena at the dayside magnetopause drive magnetospheric ultra low frequency (ULF) waves, which can play an important role in the dynamics of Earth's radiation belts. These transient phenomena and their geoeffects have been investigated using coordinated in-situ spacecraft observations, spacecraft-borne imagers, ground-based observations, and numerical simulations. Cluster, THEMIS, Geotail, and MMS multi-mission observations allow us to track the motion and time evolution of transient phenomena at different spatial and temporal scales in detail, whereas ground-based experiments can observe the ionospheric projections of transient magnetopause phenomena such as waves on the magnetopause driven by hot flow anomalies or flux transfer events produced by bursty reconnection across their full longitudinal and latitudinal extent. Magnetohydrodynamics (MHD), hybrid, and particle-in-cell (PIC) simulations are powerful tools to simulate the dayside transient phenomena. This paper provides a comprehensive review of the present understanding of dayside transient phenomena at Earth and other planets, their geoeffects, and outstanding questions.
Collapse
Affiliation(s)
- Hui Zhang
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- Shandong University, Weihai, China
| | - Qiugang Zong
- Institute of Space Physics and Applied Technology, Peking University, Beijing, 100871 China
- Polar Research Institute of China, Shanghai, 200136 China
| | - Hyunju Connor
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Peter Delamere
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
| | - Gábor Facskó
- Department of Informatics, Milton Friedman University, 1039 Budapest, Hungary
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, 1121 Budapest, Hungary
| | | | - Hiroshi Hasegawa
- Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
| | | | - Árpád Kis
- Institute of Earth Physics and Space Science (ELKH EPSS), Sopron, Hungary
| | - Guan Le
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Bertrand Lembège
- LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales), IPSL/CNRS/UVSQ, 11 Bd d’Alembert, Guyancourt, 78280 France
| | - Yu Lin
- Auburn University, Auburn, USA
| | - Terry Liu
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Kjellmar Oksavik
- Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
- Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
| | | | - Antonius Otto
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
| | - Jie Ren
- Institute of Space Physics and Applied Technology, Peking University, Beijing, 100871 China
| | | | - David Sibeck
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | | |
Collapse
|
4
|
Sibeck DG, Borodkova NL, Schwartz SJ, Owen CJ, Kessel R, Kokubun S, Lepping RP, Lin R, Liou K, Lühr H, McEntire RW, Meng CI, Mukai T, Nemecek Z, Parks G, Phan TD, Romanov SA, Safrankova J, Sauvaud JA, Singer HJ, Solovyev SI, Szabo A, Takahashi K, Williams DJ, Yumoto K, Zastenker GN. Comprehensive study of the magnetospheric response to a hot flow anomaly. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998ja900021] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|