1
|
Forsyth C, Fazakerley AN, Rae IJ, J Watt CE, Murphy K, Wild JA, Karlsson T, Mutel R, Owen CJ, Ergun R, Masson A, Berthomier M, Donovan E, Frey HU, Matzka J, Stolle C, Zhang Y. In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2014; 119:927-946. [PMID: 26167439 PMCID: PMC4497475 DOI: 10.1002/2013ja019302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/13/2014] [Indexed: 06/01/2023]
Abstract
UNLABELLED The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere toward dawn and out of the ionosphere toward dusk, linked by a westward electrojet. We use multispacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 January 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft traveled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal substructure on scales of 100 km at altitudes of 4000-7000 km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240 s after Cluster 4 at 1300-2000 km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the preonset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs), we conclude that significant questions remain for the explanation of SCW structuring by BBF-driven "wedgelets." Our results therefore represent constraints on future modeling and theoretical frameworks on the generation of the SCW. KEY POINTS The substorm current wedge (SCW) has significant azimuthal structureCurrent sheets within the SCW are north-south alignedThe substructure of the SCW raises questions for the proposed wedgelet scenario.
Collapse
Affiliation(s)
- C Forsyth
- Mullard Space Science Laboratory, UCL Dorking, UK
| | | | - I J Rae
- Mullard Space Science Laboratory, UCL Dorking, UK
| | - C E J Watt
- Department of Meteorology, University of Reading Reading, UK
| | - K Murphy
- University of Alberta Edmonton, Alberta, Canada
| | - J A Wild
- Lancaster University Lancaster, UK
| | - T Karlsson
- Royal Institute of Technology Stockholm, Sweden
| | - R Mutel
- Department of Physics and Astronomy, University of Iowa Iowa City, Iowa, USA
| | - C J Owen
- Mullard Space Science Laboratory, UCL Dorking, UK
| | - R Ergun
- LASP, University of Colorado Boulder Boulder, Colorado, USA
| | - A Masson
- ESA/ESTEC Noordwijk, Netherlands
| | - M Berthomier
- Laboratoire de Physique des Plasmas, Observatoire de Saint Maur Paris, France
| | - E Donovan
- Department of Physics and Astronomy, University of Calgary Calgary, Alberta, Canada
| | - H U Frey
- Space Sciences Laboratory, University of California Berkeley, California, USA
| | - J Matzka
- National Space Institute, Technical University of Denmark Lyngby, Denmark
| | - C Stolle
- National Space Institute, Technical University of Denmark Lyngby, Denmark ; GFZ, German Centre for Geosciences Potsdam, Germany
| | - Y Zhang
- John Hopkins University Applied Physics Laboratory Laurel, Maryland, USA
| |
Collapse
|
2
|
Fung SF. Recent Development in the NASA Trapped Radiation Models. RADIATION BELTS: MODELS AND STANDARDS 2013. [DOI: 10.1029/gm097p0079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Wang Y, Hong M, Chen G, Xu W, Du A, Zhao X, Liu X, Luo H. Nightside field-aligned current during the April 6, 2000 superstorm. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-3260-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Weimer DR. Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000ja000295] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|