1
|
Richard L, Khotyaintsev YV, Graham DB, Vaivads A, Gershman DJ, Russell CT. Fast Ion Isotropization by Current Sheet Scattering in Magnetic Reconnection Jets. PHYSICAL REVIEW LETTERS 2023; 131:115201. [PMID: 37774258 DOI: 10.1103/physrevlett.131.115201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 10/01/2023]
Abstract
We present a statistical analysis of ion distributions in magnetic reconnection jets using data from the Magnetospheric Multiscale spacecraft. Compared with the quiet plasma in which the jet propagates, we often find anisotropic and non-Maxwellian ion distributions in the plasma jets. We observe magnetic field fluctuations associated with unstable ion distributions, but the wave amplitudes are not large enough to scatter ions during the observed travel time of the jet. We estimate that the phase-space diffusion due to chaotic and quasiadiabatic ion motion in the current sheet is sufficiently fast to be the primary process leading to isotropization.
Collapse
Affiliation(s)
- Louis Richard
- Swedish Institute of Space Physics, Uppsala 751 21, Sweden and Department of Physics and Astronomy, Space and Plasma Physics, Uppsala University, Uppsala 751 20, Sweden
| | | | | | - Andris Vaivads
- Division of Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden, and Ventspils University of Applied Sciences, Ventspils 3601, Latvia
| | | | | |
Collapse
|
2
|
Rogers AJ, Farrugia CJ, Torbert RB, Rogers TJ. Applying Magnetic Curvature to MMS Data to Identify Thin Current Sheets Relative to Tail Reconnection. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2023; 128:e2022JA030577. [PMID: 37035416 PMCID: PMC10078146 DOI: 10.1029/2022ja030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/19/2023]
Abstract
Thin current sheets (TCSs) have been postulated to be a necessary precondition for reconnection onset. Magnetic reconnection X-lines in the magnetotail have been observed to be more common duskward of midnight. We take advantage of the MMS tetrahedral formation during the 2017-2020 MMS tail seasons to calculate the thickness of the cross-tail neutral sheet relative to ion gyroradius. While a similar technique was applied to Cluster data, current sheet thickness over a broader range of radial distances has not been robustly explored before this study. We compare our analysis to recent theories regarding mechanisms of tail current sheet thinning and to recent simulations. We find MMS spent more than twice as long in ion-scale TCSs in the pre-midnight sector than post-midnight, despite nearly even plasma sheet dwell time. The dawn-dusk asymmetry in the distribution of Ion Diffusion Regions, as previously reported in relation to regions of TCSs, is also analyzed.
Collapse
Affiliation(s)
- A. J. Rogers
- Space Science CenterUniversity of New HampshireDurhamNHUSA
- Los Alamos National LaboratoryLos AlamosNMUSA
| | - C. J. Farrugia
- Space Science CenterUniversity of New HampshireDurhamNHUSA
| | - R. B. Torbert
- Space Science CenterUniversity of New HampshireDurhamNHUSA
| | | |
Collapse
|
3
|
Sitnov M, Birn J, Ferdousi B, Gordeev E, Khotyaintsev Y, Merkin V, Motoba T, Otto A, Panov E, Pritchett P, Pucci F, Raeder J, Runov A, Sergeev V, Velli M, Zhou X. Explosive Magnetotail Activity. SPACE SCIENCE REVIEWS 2019; 215:31. [PMID: 31178609 PMCID: PMC6528807 DOI: 10.1007/s11214-019-0599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/27/2019] [Indexed: 06/01/2023]
Abstract
Modes and manifestations of the explosive activity in the Earth's magnetotail, as well as its onset mechanisms and key pre-onset conditions are reviewed. Two mechanisms for the generation of the pre-onset current sheet are discussed, namely magnetic flux addition to the tail lobes, or other high-latitude perturbations, and magnetic flux evacuation from the near-Earth tail associated with dayside reconnection. Reconnection onset may require stretching and thinning of the sheet down to electron scales. It may also start in thicker sheets in regions with a tailward gradient of the equatorial magnetic field B z ; in this case it begins as an ideal-MHD instability followed by the generation of bursty bulk flows and dipolarization fronts. Indeed, remote sensing and global MHD modeling show the formation of tail regions with increased B z , prone to magnetic reconnection, ballooning/interchange and flapping instabilities. While interchange instability may also develop in such thicker sheets, it may grow more slowly compared to tearing and cause secondary reconnection locally in the dawn-dusk direction. Post-onset transients include bursty flows and dipolarization fronts, micro-instabilities of lower-hybrid-drift and whistler waves, as well as damped global flux tube oscillations in the near-Earth region. They convert the stretched tail magnetic field energy into bulk plasma acceleration and collisionless heating, excitation of a broad spectrum of plasma waves, and collisional dissipation in the ionosphere. Collisionless heating involves ion reflection from fronts, Fermi, betatron as well as other, non-adiabatic, mechanisms. Ionospheric manifestations of some of these magnetotail phenomena are discussed. Explosive plasma phenomena observed in the laboratory, the solar corona and solar wind are also discussed.
Collapse
Affiliation(s)
- Mikhail Sitnov
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | | | - Evgeny Gordeev
- Earth’s Physics Department, Saint Petersburg State University, St. Petersburg, Russia
| | | | - Viacheslav Merkin
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Tetsuo Motoba
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - Evgeny Panov
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - Philip Pritchett
- Department of Physics and Astronomy, University of California, Los Angeles, CA USA
| | - Fulvia Pucci
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, 509-5292 Japan
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ USA
| | - Joachim Raeder
- Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH USA
| | - Andrei Runov
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA USA
| | - Victor Sergeev
- Earth’s Physics Department, Saint Petersburg State University, St. Petersburg, Russia
| | - Marco Velli
- University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Xuzhi Zhou
- School of Earth and Space Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
4
|
Ma ZW, Chen T, Zhang HW, Yu MY. Effective Resistivity in Collisionless Magnetic Reconnection. Sci Rep 2018; 8:10521. [PMID: 30002502 PMCID: PMC6043628 DOI: 10.1038/s41598-018-28851-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2018] [Indexed: 11/09/2022] Open
Abstract
An effective resistivity relevant to collisionless magnetic reconnection (MR) in plasma is presented. It is based on the argument that pitch angle scattering of electrons in the small electron diffusion region around the X line can lead to an effective, resistivity in collisionless plasma. The effective resistivity so obtained is in the form of a power law of the local plasma and magnetic field parameters. Its validity is confirmed by direct collisionless particle-in-cell (PIC) simulation. The result agrees very well with the resistivity (obtained from available data) of a large number of environments susceptible to MR: from the intergalactic and interstellar to solar and terrestrial to laboratory fusion plasmas. The scaling law can readily be incorporated into existing collisional magnetohydrodynamic simulation codes to investigate collisionless MR, as well as serve as a guide to ab initio theoretical investigations of the collisionless MR process.
Collapse
Affiliation(s)
- Z W Ma
- Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, 310027, China.
| | - T Chen
- Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - H W Zhang
- Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - M Y Yu
- Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Wygant JR, Cattell CA, Lysak R, Song Y, Dombeck J, McFadden J, Mozer FS, Carlson CW, Parks G, Lucek EA, Balogh A, Andre M, Reme H, Hesse M, Mouikis C. Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004ja010708] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. R. Wygant
- School of Physics and Astronomy; University of Minnesota; Minneapolis Minnesota USA
| | - C. A. Cattell
- School of Physics and Astronomy; University of Minnesota; Minneapolis Minnesota USA
| | - R. Lysak
- School of Physics and Astronomy; University of Minnesota; Minneapolis Minnesota USA
| | - Y. Song
- School of Physics and Astronomy; University of Minnesota; Minneapolis Minnesota USA
| | - J. Dombeck
- School of Physics and Astronomy; University of Minnesota; Minneapolis Minnesota USA
| | - J. McFadden
- Space Sciences Laboratory; University of California; Berkeley California USA
| | - F. S. Mozer
- Space Sciences Laboratory; University of California; Berkeley California USA
| | - C. W. Carlson
- Space Sciences Laboratory; University of California; Berkeley California USA
| | - G. Parks
- Space Sciences Laboratory; University of California; Berkeley California USA
| | - E. A. Lucek
- Blackett Laboratory; Imperial College; London UK
| | - A. Balogh
- Blackett Laboratory; Imperial College; London UK
| | - M. Andre
- Swedish Institute of Space Physics; Uppsala Division; Uppsala Sweden
| | - H. Reme
- Centre d'Etude Spatiale des Rayonnements; Toulouse France
| | - M. Hesse
- NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | - C. Mouikis
- University of New Hampshire; Durham New Hampshire USA
| |
Collapse
|
7
|
Daughton W, Lapenta G, Ricci P. Nonlinear evolution of the lower-hybrid drift instability in a current sheet. PHYSICAL REVIEW LETTERS 2004; 93:105004. [PMID: 15447411 DOI: 10.1103/physrevlett.93.105004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Indexed: 05/24/2023]
Abstract
The lower-hybrid drift instability is simulated in an ion-scale current sheet using a fully kinetic approach with values of the ion to electron mass ratio up to m(i)/m(e)=1836. Although the instability is localized on the edge of the layer, the nonlinear development increases the electron flow velocity in the central region resulting in a strong bifurcation of the current density and significant anisotropic heating of the electrons. This dramatically enhances the collisionless tearing mode and may lead to the rapid onset of magnetic reconnection for current sheets near the critical scale.
Collapse
Affiliation(s)
- William Daughton
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
9
|
Sitnov MI, Zelenyi LM, Malova HV, Sharma AS. Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999ja000431] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Kubyshkina MV, Sergeev VA, Pulkkinen TI. Hybrid Input Algorithm: An event-oriented magnetospheric model. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999ja900222] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|