1
|
Fletcher LN, Cavalié T, Grassi D, Hueso R, Lara LM, Kaspi Y, Galanti E, Greathouse TK, Molyneux PM, Galand M, Vallat C, Witasse O, Lorente R, Hartogh P, Poulet F, Langevin Y, Palumbo P, Gladstone GR, Retherford KD, Dougherty MK, Wahlund JE, Barabash S, Iess L, Bruzzone L, Hussmann H, Gurvits LI, Santolik O, Kolmasova I, Fischer G, Müller-Wodarg I, Piccioni G, Fouchet T, Gérard JC, Sánchez-Lavega A, Irwin PGJ, Grodent D, Altieri F, Mura A, Drossart P, Kammer J, Giles R, Cazaux S, Jones G, Smirnova M, Lellouch E, Medvedev AS, Moreno R, Rezac L, Coustenis A, Costa M. Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer. SPACE SCIENCE REVIEWS 2023; 219:53. [PMID: 37744214 PMCID: PMC10511624 DOI: 10.1007/s11214-023-00996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023]
Abstract
ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 μm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
Collapse
Affiliation(s)
- Leigh N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Thibault Cavalié
- Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | - Davide Grassi
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - Ricardo Hueso
- Física Aplicada, Escuela de Ingeniería de Bilbao Universidad del País Vasco UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain
| | - Luisa M. Lara
- Instituto de Astrofísica de Andalucía-CSIC, c/Glorieta de la Astronomía 3, 18008 Granada, Spain
| | - Yohai Kaspi
- Dept. of Earth and Planetray Science, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Eli Galanti
- Dept. of Earth and Planetray Science, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | - Marina Galand
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK
| | - Claire Vallat
- European Space Agency (ESA), ESAC Camino Bajo del Castillo s/n Villafranca del Castillo, 28692 Villanueva de la Cañada (Madrid), Spain
| | - Olivier Witasse
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, Netherlands
| | - Rosario Lorente
- European Space Agency (ESA), ESAC Camino Bajo del Castillo s/n Villafranca del Castillo, 28692 Villanueva de la Cañada (Madrid), Spain
| | - Paul Hartogh
- Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
| | - François Poulet
- Institut d’Astrophysique Spatiale, CNRS/Université Paris-Sud, 91405 Orsay Cedex, France
| | - Yves Langevin
- Institut d’Astrophysique Spatiale, CNRS/Université Paris-Sud, 91405 Orsay Cedex, France
| | - Pasquale Palumbo
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - G. Randall Gladstone
- Southwest Research Institute, San Antonio, TX 78228 United States
- University of Texas at San Antonio, San Antonio, TX United States
| | - Kurt D. Retherford
- Southwest Research Institute, San Antonio, TX 78228 United States
- University of Texas at San Antonio, San Antonio, TX United States
| | | | | | - Stas Barabash
- Swedish Institute of Space Physics (IRF), Kiruna, Sweden
| | - Luciano Iess
- Dipartimento di ingegneria meccanica e aerospaziale, Universit á La Sapienza, Roma, Italy
| | - Lorenzo Bruzzone
- Department of Information Engineering and Computer Science, Remote Sensing Laboratory, University of Trento, Via Sommarive 14, Trento, I-38123 Italy
| | - Hauke Hussmann
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - Leonid I. Gurvits
- Joint Institute for VLBI ERIC, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
- Aerospace Faculty, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
| | - Ondřej Santolik
- Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Ivana Kolmasova
- Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Georg Fischer
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | | | - Giuseppe Piccioni
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - Thierry Fouchet
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | | | - Agustin Sánchez-Lavega
- Física Aplicada, Escuela de Ingeniería de Bilbao Universidad del País Vasco UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain
| | - Patrick G. J. Irwin
- Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Parks Rd, Oxford, OX1 3PU UK
| | - Denis Grodent
- LPAP, STAR Institute, Université de Liège, Liège, Belgium
| | - Francesca Altieri
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - Alessandro Mura
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - Pierre Drossart
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
- Institut d’Astrophysique de Paris, CNRS, Sorbonne Université, 98bis Boulevard Arago, 75014 Paris, France
| | - Josh Kammer
- Southwest Research Institute, San Antonio, TX 78228 United States
| | - Rohini Giles
- Southwest Research Institute, San Antonio, TX 78228 United States
| | - Stéphanie Cazaux
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Geraint Jones
- UCL Mullard Space Science Laboratory, Hombury St. Mary, Dorking, RH5 6NT UK
- The Centre for Planetary Sciences at UCL/Birkbeck, London, WC1E 6BT UK
| | - Maria Smirnova
- Dept. of Earth and Planetray Science, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Emmanuel Lellouch
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | | | - Raphael Moreno
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | - Ladislav Rezac
- Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
| | - Athena Coustenis
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | - Marc Costa
- Rhea Group, for European Space Agency, ESAC, Madrid, Spain
| |
Collapse
|
2
|
Fletcher LN, Kaspi Y, Guillot T, Showman AP. How Well Do We Understand the Belt/Zone Circulation of Giant Planet Atmospheres? SPACE SCIENCE REVIEWS 2020; 216:30. [PMID: 32214508 PMCID: PMC7067733 DOI: 10.1007/s11214-019-0631-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/24/2019] [Indexed: 05/20/2023]
Abstract
The atmospheres of the four giant planets of our Solar System share a common and well-observed characteristic: they each display patterns of planetary banding, with regions of different temperatures, composition, aerosol properties and dynamics separated by strong meridional and vertical gradients in the zonal (i.e., east-west) winds. Remote sensing observations, from both visiting spacecraft and Earth-based astronomical facilities, have revealed the significant variation in environmental conditions from one band to the next. On Jupiter, the reflective white bands of low temperatures, elevated aerosol opacities, and enhancements of quasi-conserved chemical tracers are referred to as 'zones.' Conversely, the darker bands of warmer temperatures, depleted aerosols, and reductions of chemical tracers are known as 'belts.' On Saturn, we define cyclonic belts and anticyclonic zones via their temperature and wind characteristics, although their relation to Saturn's albedo is not as clear as on Jupiter. On distant Uranus and Neptune, the exact relationships between the banded albedo contrasts and the environmental properties is a topic of active study. This review is an attempt to reconcile the observed properties of belts and zones with (i) the meridional overturning inferred from the convergence of eddy angular momentum into the eastward zonal jets at the cloud level on Jupiter and Saturn and the prevalence of moist convective activity in belts; and (ii) the opposing meridional motions inferred from the upper tropospheric temperature structure, which implies decay and dissipation of the zonal jets with altitude above the clouds. These two scenarios suggest meridional circulations in opposing directions, the former suggesting upwelling in belts, the latter suggesting upwelling in zones. Numerical simulations successfully reproduce the former, whereas there is a wealth of observational evidence in support of the latter. This presents an unresolved paradox for our current understanding of the banded structure of giant planet atmospheres, that could be addressed via a multi-tiered vertical structure of "stacked circulation cells," with a natural transition from zonal jet pumping to dissipation as we move from the convectively-unstable mid-troposphere into the stably-stratified upper troposphere.
Collapse
Affiliation(s)
- Leigh N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Yohai Kaspi
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Tristan Guillot
- Université Côte d’Azur, OCA, Lagrange CNRS, 06304 Nice, France
| | - Adam P. Showman
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 USA
| |
Collapse
|
3
|
Kaspi Y, Galanti E, Hubbard WB, Stevenson DJ, Bolton SJ, Iess L, Guillot T, Bloxham J, Connerney JEP, Cao H, Durante D, Folkner WM, Helled R, Ingersoll AP, Levin SM, Lunine JI, Miguel Y, Militzer B, Parisi M, Wahl SM. Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature 2018. [PMID: 29516995 DOI: 10.1038/nature25793] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The depth to which Jupiter's observed east-west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno's gravitational measurements have revealed that Jupiter's gravitational field is north-south asymmetric, which is a signature of the planet's atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000 kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter's total mass.
Collapse
Affiliation(s)
- Y Kaspi
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - E Galanti
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - W B Hubbard
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA
| | - D J Stevenson
- Divison of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - S J Bolton
- Southwest Research Institute, San Antonio, Texas 78238, USA
| | - L Iess
- Department of Mechanical and Aerospace Engineering, Sapienza Universita di Roma, 00184 Rome, Italy
| | - T Guillot
- Université Côte d'Azur, OCA, Lagrange CNRS, 06304 Nice, France
| | - J Bloxham
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - J E P Connerney
- Space Research Corporation, Annapolis, Maryland 21403, USA.,NASA/GSFC, Greenbelt, Maryland 20771, USA
| | - H Cao
- Divison of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA.,Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - D Durante
- Department of Mechanical and Aerospace Engineering, Sapienza Universita di Roma, 00184 Rome, Italy
| | - W M Folkner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - R Helled
- Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, 8057 Zurich, Switzerland
| | - A P Ingersoll
- Divison of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - S M Levin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - J I Lunine
- Department of Astronomy, Cornell University, Ithaca, New York 14853, USA
| | - Y Miguel
- Université Côte d'Azur, OCA, Lagrange CNRS, 06304 Nice, France.,Leiden Observatory, University of Leiden, Leiden, The Netherlands
| | - B Militzer
- Department of Earth and Planetray Science, University of California, Berkeley, California 94720, USA
| | - M Parisi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - S M Wahl
- Department of Earth and Planetray Science, University of California, Berkeley, California 94720, USA
| |
Collapse
|