1
|
Parisi L, Ferreira AMG, Ritsema J. Apparent Splitting of S Waves Propagating Through an Isotropic Lowermost Mantle. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2018; 123:3909-3922. [PMID: 30034981 PMCID: PMC6049884 DOI: 10.1002/2017jb014394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Observations of shear wave anisotropy are key for understanding the mineralogical structure and flow in the mantle. Several researchers have reported the presence of seismic anisotropy in the lowermost 150-250 km of the mantle (i.e., D '' layer), based on differences in the arrival times of vertically (SV) and horizontally (SH) polarized shear waves. By computing waveforms at a period > 6 s for a wide range of 1-D and 3-D Earth structures, we illustrate that a time shift (i.e., apparent splitting) between SV and SH may appear in purely isotropic simulations. This may be misinterpreted as shear wave anisotropy. For near-surface earthquakes, apparent shear wave splitting can result from the interference of S with the surface reflection sS. For deep earthquakes, apparent splitting can be due to the S wave triplication in D '' , reflections off discontinuities in the upper mantle, and 3-D heterogeneity. The wave effects due to anomalous isotropic structure may not be easily distinguished from purely anisotropic effects if the analysis does not involve full waveform simulations.
Collapse
Affiliation(s)
- Laura Parisi
- PSE DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
- School of Environmental SciencesUniversity of East AngliaNorwichUK
| | - Ana M. G. Ferreira
- Department of Earth SciencesUniversity College LondonLondonUK
- CEris, ICISTInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Jeroen Ritsema
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
2
|
Murakami M, Goncharov AF, Hirao N, Masuda R, Mitsui T, Thomas SM, Bina CR. High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nat Commun 2014; 5:5428. [DOI: 10.1038/ncomms6428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/01/2014] [Indexed: 11/09/2022] Open
|
3
|
Abstract
The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto.
Collapse
|
4
|
Mineralogical effects on the detectability of the postperovskite boundary. Proc Natl Acad Sci U S A 2012; 109:2275-9. [PMID: 22308329 DOI: 10.1073/pnas.1109204109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The discovery of a phase transition in Mg-silicate perovskite (Pv) to postperovskite (pPv) at lowermost mantle pressure-temperature (P - T) conditions may provide an explanation for the discontinuous increase in shear wave velocity found in some regions at a depth range of 200 to 400 km above the core-mantle boundary, hereafter the D('') discontinuity. However, recent studies on binary and ternary systems showed that reasonable contents of Fe(2+) and Al for pyrolite increase the thickness (width of the mixed phase region) of the Pv - pPv boundary (400-600 km) to much larger than the D('') discontinuity (≤ 70 km). These results challenge the assignment of the D('') discontinuity to the Pv - pPv boundary in pyrolite (homogenized mantle composition). Furthermore, the mineralogy and composition of rocks that can host a detectable Pv → pPv boundary are still unknown. Here we report in situ measurements of the depths and thicknesses of the Pv → pPv transition in multiphase systems (San Carlos olivine, pyrolitic, and midocean ridge basaltic compositions) at the P - T conditions of the lowermost mantle, searching for candidate rocks with a sharp Pv - pPv discontinuity. Whereas the pyrolitic mantle may not have a seismologically detectable Pv → pPv transition due to the effect of Al, harzburgitic compositions have detectable transitions due to low Al content. In contrast, Al-rich basaltic compositions may have a detectable Pv - pPv boundary due to their distinct mineralogy. Therefore, the observation of the D('') discontinuity may be related to the Pv → pPv transition in the differentiated oceanic lithosphere materials transported to the lowermost mantle by subducting slabs.
Collapse
|
5
|
Wu B, Driscoll P, Olson P. A statistical boundary layer model for the mantleD″ region. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jb008511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling. Proc Natl Acad Sci U S A 2009; 106:22119-23. [PMID: 20018735 DOI: 10.1073/pnas.0905920106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The internal structure of the core-mantle boundary (CMB) region of the Earth plays a crucial role in controlling the dynamics and evolution of our planet. We have developed a comprehensive model based on the radial variations of shear velocity in the D'' layer (the base of the lower mantle) and the high-P,T elastic properties of major candidate minerals, including the effects of post-perovskite phase changes. This modeling shows a temperature profile in the lowermost mantle with a CMB temperature of 3,800 +/- 200 K, which suggests that lateral temperature variations of 200-300 K can explain much of the large velocity heterogeneity observed in D''. A single-crossing phase transition model was found to be more favorable in reproducing the observed seismic wave velocity structure than a double-crossing phase transition model.
Collapse
|
7
|
Wu Z, Wentzcovitch RM, Umemoto K, Li B, Hirose K, Zheng JC. Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005275] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Monnereau M, Yuen DA. Topology of the postperovskite phase transition and mantle dynamics. Proc Natl Acad Sci U S A 2007; 104:9156-61. [PMID: 17483485 PMCID: PMC1890463 DOI: 10.1073/pnas.0608480104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Indexed: 11/18/2022] Open
Abstract
The postperovskite (ppv) phase transition occurs in the deep mantle close to the core-mantle boundary (CMB). For this reason, we must include in the dynamical considerations both the Clapeyron slope and the temperature intercept, T(int), which is the temperature of the phase transition at the CMB pressure. For a CMB temperature greater than T(int), there is a double crossing of the phase boundary by the geotherms associated with the descending flow. We have found a great sensitivity of the shape of the ppv surface due to the CMB from variations of various parameters such as the amount of internal heating, the Clapeyron slope, and the temperature intercept. Three-dimensional spherical models of mantle convection that can satisfy the seismological constraints depend on the Clapeyron slope. At moderate value, 8 MPa/K, the best fit is found with a core heat flow amounting for 40% of the total heat budget (approximately equal to 15 TW), whereas for 10 MPa/K the agreement is for a lower core heat flow (20%, approximately equal to 7.5 TW). In all cases, these solutions correspond to a temperature intercept 200 K lower than the CMB temperature. These models have holes of perovskite adjacent to ppv in regions of hot upwellings.
Collapse
Affiliation(s)
- Marc Monnereau
- Unité Mixte de Recherche 5562, Centre National de la Recherche Scientifique-Université Paul Sabatier Toulouse III, 14 Avenue Edouard Belin, 31400 Toulouse, France.
| | | |
Collapse
|
9
|
van der Hilst RD, de Hoop MV, Wang P, Shim SH, Ma P, Tenorio L. Seismostratigraphy and thermal structure of Earth's core-mantle boundary region. Science 2007; 315:1813-7. [PMID: 17395822 DOI: 10.1126/science.1137867] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We used three-dimensional inverse scattering of core-reflected shear waves for large-scale, high-resolution exploration of Earth's deep interior (D'') and detected multiple, piecewise continuous interfaces in the lowermost layer (D'') beneath Central and North America. With thermodynamic properties of phase transitions in mantle silicates, we interpret the images and estimate in situ temperatures. A widespread wave-speed increase at 150 to 300 kilometers above the coremantle boundary is consistent with a transition from perovskite to postperovskite. Internal D'' stratification may be due to multiple phase-boundary crossings, and a deep wave-speed reduction may mark the base of a postperovskite lens about 2300 kilometers wide and 250 kilometers thick. The core-mantle boundary temperature is estimated at 3950 +/- 200 kelvin. Beneath Central America, a site of deep subduction, the D'' is relatively cold (DeltaT = 700 +/- 100 kelvin). Accounting for a factor-of-two uncertainty in thermal conductivity, core heat flux is 80 to 160 milliwatts per square meter (mW m(-2)) into the coldest D'' region and 35 to 70 mW m(-2) away from it. Combined with estimates from the central Pacific, this suggests a global average of 50 to 100 mW m(-2) and a total heat loss of 7.5 to 15 terawatts.
Collapse
Affiliation(s)
- R D van der Hilst
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge MA, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Lay T, Garnero EJ. Reconciling the post-perovskite phase with seismological observations of lowermost mantle structure. GEOPHYSICAL MONOGRAPH SERIES 2007. [DOI: 10.1029/174gm11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Hutko AR, Lay T, Garnero EJ, Revenaugh J. Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature 2006; 441:333-6. [PMID: 16710418 DOI: 10.1038/nature04757] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 03/22/2006] [Indexed: 11/09/2022]
Abstract
Seismic tomography has been used to infer that some descending slabs of oceanic lithosphere plunge deep into the Earth's lower mantle. The fate of these slabs has remained unresolved, but it has been postulated that their ultimate destination is the lowermost few hundred kilometres of the mantle, known as the D'' region. Relatively cold slab material may account for high seismic velocities imaged in D'' beneath areas of long-lived plate subduction, and for reflections from a seismic velocity discontinuity just above the anomalously high wave speed regions. The D'' discontinuity itself is probably the result of a phase change in relatively low-temperature magnesium silicate perovskite. Here, we present images of the D'' region beneath the Cocos plate using Kirchhoff migration of horizontally polarized shear waves, and find a 100-km vertical step occurring over less than 100 km laterally in an otherwise flat D'' shear velocity discontinuity. Folding and piling of a cold slab that has reached the core-mantle boundary, as observed in numerical and experimental models, can account for the step by a 100-km elevation of the post-perovskite phase boundary due to a 700 degrees C lateral temperature reduction in the folded slab. We detect localized low velocities at the edge of the slab material, which may result from upwellings caused by the slab laterally displacing a thin hot thermal boundary layer.
Collapse
Affiliation(s)
- Alexander R Hutko
- Earth Sciences Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA.
| | | | | | | |
Collapse
|
12
|
Avants M, Lay T, Russell SA, Garnero EJ. Shear velocity variation within the D″ region beneath the central Pacific. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2004jb003270] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Megan Avants
- Earth Sciences Department; University of California; Santa Cruz California USA
| | - Thorne Lay
- Institute of Geophysics and Planetary Physics; University of California; Santa Cruz California USA
| | | | - Edward J. Garnero
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
13
|
Shieh SR, Duffy TS, Kubo A, Shen G, Prakapenka VB, Sata N, Hirose K, Ohishi Y. Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene. Proc Natl Acad Sci U S A 2006; 103:3039-43. [PMID: 16492747 PMCID: PMC1413868 DOI: 10.1073/pnas.0506811103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using the laser-heated diamond anvil cell, we investigate the stability and equation of state of the postperovskite (ppv, CaIrO(3)-type) phase synthesized from a natural pyroxene composition with 9 mol.% FeSiO(3). Our measured pressure-volume data from 12-106 GPa for the ppv phase yield a bulk modulus of 219(5) GPa and a zero-pressure volume of 164.9(6) A(3) when K'(0) = 4. The bulk modulus of ppv is 575(15) GPa at a pressure of 100 GPa. The transition pressure is lowered by the presence of Fe. Our x-ray diffraction data indicate the ppv phase can be formed at P > 109(4) GPa and 2,400(400) K, corresponding to approximately 400-550 km above the core-mantle boundary. Direct comparison of volumes of coexisting perovskite and CaIrO(3)-type phases at 80-106 GPa demonstrates that the ppv phase has a smaller volume than perovskite by 1.1(2)%. Using measured volumes together with the bulk modulus calculated from equation of state fits, we find that the bulk sound velocity decreases by 2.3(2.1)% across this transition at 120 GPa. Upon decompression without further heating, it was found that the ppv phase could still be observed at pressures as low at 12 GPa, and evidence for at least partial persistence to ambient conditions is also reported.
Collapse
Affiliation(s)
- Sean R Shieh
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wentzcovitch RM, Tsuchiya T, Tsuchiya J. MgSiO3 postperovskite at D'' conditions. Proc Natl Acad Sci U S A 2006; 103:543-6. [PMID: 16407135 PMCID: PMC1334645 DOI: 10.1073/pnas.0506879103] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Indexed: 11/18/2022] Open
Abstract
The postperovskite transition in MgSiO(3) at conditions similar to those expected at the D'' discontinuity of Earth's lower mantle offers a paradigm for interpreting the properties of this region. Despite consistent experimental and theoretical predictions of this phase transformation, the complexity of the D'' region raises questions about its geophysical significance. Here we report the thermoelastic properties of Cmcm postperovskite at appropriate conditions and evidences of its presence in the lowermost mantle. These are (i) the jumps in shear and longitudinal velocities similar to those observed in certain places of the D'' discontinuity and (ii) the anticorrelation between shear and bulk velocity anomalies as detected within the D'' region. In addition, the increase in shear modulus across the phase transition provides a possible explanation for the reported discrepancy between the calculated shear modulus of postperovskite free aggregates and the seismological counterpart in the lowermost mantle.
Collapse
Affiliation(s)
- Renata M Wentzcovitch
- Department of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute for Digital Technology and Advanced Computation, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
15
|
Rost S, Garnero EJ, Williams Q. Fine-scale ultralow-velocity zone structure from high-frequency seismic array data. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jb004088] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Wookey J, Stackhouse S, Kendall JM, Brodholt J, Price GD. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 2005; 438:1004-7. [PMID: 16355222 DOI: 10.1038/nature04345] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 10/18/2005] [Indexed: 11/09/2022]
Abstract
Constraining the chemical, rheological and electromagnetic properties of the lowermost mantle (D'') is important to understand the formation and dynamics of the Earth's mantle and core. To explain the origin of the variety of characteristics of this layer observed with seismology, a number of theories have been proposed, including core-mantle interaction, the presence of remnants of subducted material and that D'' is the site of a mineral phase transformation. This final possibility has been rejuvenated by recent evidence for a phase change in MgSiO3 perovskite (thought to be the most prevalent phase in the lower mantle) at near core-mantle boundary temperature and pressure conditions. Here we explore the efficacy of this 'post-perovskite' phase to explain the seismic properties of the lowermost mantle through coupled ab initio and seismic modelling of perovskite and post-perovskite polymorphs of MgSiO3, performed at lowermost-mantle temperatures and pressures. We show that a post-perovskite model can explain the topography and location of the D'' discontinuity, apparent differences in compressional- and shear-wave models and the observation of a deeper, weaker discontinuity. Furthermore, our calculations show that the regional variations in lower-mantle shear-wave anisotropy are consistent with the proposed phase change in MgSiO3 perovskite.
Collapse
Affiliation(s)
- James Wookey
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
17
|
Helmberger D, Lay T, Ni S, Gurnis M. Deep mantle structure and the postperovskite phase transition. Proc Natl Acad Sci U S A 2005; 102:17257-63. [PMID: 16217029 PMCID: PMC1297654 DOI: 10.1073/pnas.0502504102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Indexed: 11/18/2022] Open
Abstract
Seismologists have known for many years that the lowermost mantle of the Earth is complex. Models based on observed seismic phases sampling this region include relatively sharp horizontal discontinuities with strong zones of anisotropy, nearly vertical contrasts in structure, and small pockets of ultralow velocity zones (ULVZs). This diversity of structures is beginning to be understood in terms of geodynamics and mineral physics, with dense partial melts causing the ULVZs and a postperovskite solid-solid phase transition producing regional layering, with the possibility of large-scale variations in chemistry. This strong heterogeneity has significant implications on heat transport out of core, the evolution of the magnetic field, and magnetic field polarity reversals.
Collapse
Affiliation(s)
- D Helmberger
- Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
18
|
Hernlund JW, Thomas C, Tackley PJ. A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle. Nature 2005; 434:882-6. [PMID: 15829961 DOI: 10.1038/nature03472] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 02/15/2005] [Indexed: 11/09/2022]
Abstract
The thermal structure of the Earth's lowermost mantle--the D'' layer spanning depths of approximately 2,600-2,900 kilometres--is key to understanding the dynamical state and history of our planet. Earth's temperature profile (the geotherm) is mostly constrained by phase transitions, such as freezing at the inner-core boundary or changes in crystal structure within the solid mantle, that are detected as discontinuities in seismic wave speed and for which the pressure and temperature conditions can be constrained by experiment and theory. A recently discovered phase transition at pressures of the D'' layer is ideally situated to reveal the thermal structure of the lowermost mantle, where no phase transitions were previously known to exist. Here we show that a pair of seismic discontinuities observed in some regions of D'' can be explained by the same phase transition as the result of a double-crossing of the phase boundary by the geotherm at two different depths. This simple model can also explain why a seismic discontinuity is not observed in some other regions, and provides new constraints for the magnitude of temperature variations within D''.
Collapse
Affiliation(s)
- John W Hernlund
- Department of Earth and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567, USA.
| | | | | |
Collapse
|
19
|
Garnero EJ, Moore MM, Lay T, Fouch MJ. Isotropy or weak vertical transverse isotropy in D″ beneath the Atlantic Ocean. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jb003004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edward J. Garnero
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Melissa M. Moore
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Thorne Lay
- Earth Sciences Department and Institute of Geophysics and Planetary Physics; University of California; Santa Cruz California USA
| | - Matthew J. Fouch
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
20
|
Thomas C, Garnero EJ, Lay T. High-resolution imaging of lowermost mantle structure under the Cocos plate. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jb003013] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christine Thomas
- Department of Earth and Ocean Sciences; University of Liverpool; Liverpool UK
| | - Edward J. Garnero
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Thorne Lay
- Earth Sciences Department and Institute of Geophysics and Planetary Physics; University of California; Santa Cruz California USA
| |
Collapse
|
21
|
Iitaka T, Hirose K, Kawamura K, Murakami M. The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle. Nature 2004; 430:442-5. [PMID: 15269765 DOI: 10.1038/nature02702] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 05/27/2004] [Indexed: 11/08/2022]
Abstract
MgSiO3 perovskite has been assumed to be the dominant component of the Earth's lower mantle, although this phase alone cannot explain the discontinuity in seismic velocities observed 200-300 km above the core-mantle boundary (the D" discontinuity) or the polarization anisotropy observed in the lowermost mantle. Experimental and theoretical studies that have attempted to attribute these phenomena to a phase transition in the perovskite phase have tended to simply confirm the stability of the perovskite phase. However, recent in situ X-ray diffraction measurements have revealed a transition to a 'post-perovskite' phase above 125 GPa and 2,500 K--conditions close to those at the D" discontinuity. Here we show the results of first-principles calculations of the structure, stability and elasticity of both phases at zero temperature. We find that the post-perovskite phase becomes the stable phase above 98 GPa, and may be responsible for the observed seismic discontinuity and anisotropy in the lowermost mantle. Although our ground-state calculations of the unit cell do not include the effects of temperature and minor elements, they do provide a consistent explanation for a number of properties of the D" layer.
Collapse
Affiliation(s)
- T Iitaka
- Computational Astrophysics Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
In situ x-ray diffraction measurements of MgSiO
3
were performed at high pressure and temperature similar to the conditions at Earth's core-mantle boundary. Results demonstrate that MgSiO
3
perovskite transforms to a new high-pressure form with stacked SiO
6
-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in density of 1.0 to 1.2%. The origin of the D″ seismic discontinuity may be attributed to this post-perovskite phase transition. The new phase may have large elastic anisotropy and develop preferred orientation with platy crystal shape in the shear flow that can cause strong seismic anisotropy below the D″ discontinuity.
Collapse
Affiliation(s)
- Motohiko Murakami
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan
- Institute for Frontier Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kei Hirose
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan
- Institute for Frontier Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Katsuyuki Kawamura
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan
- Institute for Frontier Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Nagayoshi Sata
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan
- Institute for Frontier Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasuo Ohishi
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan
- Institute for Frontier Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
24
|
Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y. Post-Perovskite Phase Transition in MgSiO3. Science 2004; 304:855-8. [PMID: 15073323 DOI: 10.1126/science.1095932] [Citation(s) in RCA: 1054] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In situ x-ray diffraction measurements of MgSiO3 were performed at high pressure and temperature similar to the conditions at Earth's core-mantle boundary. Results demonstrate that MgSiO3 perovskite transforms to a new high-pressure form with stacked SiO6-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in density of 1.0 to 1.2%. The origin of the D" seismic discontinuity may be attributed to this post-perovskite phase transition. The new phase may have large elastic anisotropy and develop preferred orientation with platy crystal shape in the shear flow that can cause strong seismic anisotropy below the D" discontinuity.
Collapse
Affiliation(s)
- Motohiko Murakami
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan.
| | | | | | | | | |
Collapse
|
25
|
Moore MM, Garnero EJ, Lay T, Williams Q. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jb002546] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melissa M. Moore
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Edward J. Garnero
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Thorne Lay
- Earth Sciences Department; University of California; Santa Cruz California USA
| | - Quentin Williams
- Earth Sciences Department; University of California; Santa Cruz California USA
| |
Collapse
|
26
|
Koper KD, Pyle ML, Franks JM. Constraints on aspherical core structure fromPKiKP-PcPdifferential travel times. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jb001995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keith D. Koper
- Department of Earth and Atmospheric Sciences; Saint Louis University; St. Louis Missouri USA
| | - Moira L. Pyle
- Department of Earth and Atmospheric Sciences; Saint Louis University; St. Louis Missouri USA
| | - Jill M. Franks
- Department of Earth and Atmospheric Sciences; Saint Louis University; St. Louis Missouri USA
| |
Collapse
|
27
|
Affiliation(s)
- V. S. Solomatov
- Department of Physics; New Mexico State University; Las Cruces New Mexico USA
| | - L.-N. Moresi
- Australian Geodynamics Cooperative Research Centre; CSIRO Exploration and Mining; Nedlands Western Australia Australia
| |
Collapse
|
28
|
Kuo BY, Garnero EJ, Lay T. Tomographic inversion ofS-SKStimes for shear velocity heterogeneity in D″: Degree 12 and hybrid models. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900334] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Castle JC, Creager KC, Winchester JP, van der Hilst RD. Shear wave speeds at the base of the mantle. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900193] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Cormier VF. D″ as a transition in the heterogeneity spectrum of the lowermost mantle. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900141] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Montague NL, Kellogg LH. Numerical models of a dense layer at the base of the mantle and implications for the geodynamics of D″. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999jb900450] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Valenzuela RW, Wysession ME, Neustadt MO, Butler JL. Lateral variations at the base of the mantle from profiles of digitalSdiffdata. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999jb900290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Sidorin I, Gurnis M, Helmberger DV. Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 1999; 286:1326-31. [PMID: 10558981 DOI: 10.1126/science.286.5443.1326] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A sharp discontinuity at the base of Earth's mantle has been suggested from seismic waveform studies; the observed travel time and amplitude variations have been interpreted as changes in the depth of a spatially intermittent discontinuity. Most of the observed variations in travel times and the spatial intermittance of the seismic triplication can be reproduced by a ubiquitous first-order discontinuity superimposed on global seismic velocity structure derived from tomography. The observations can be modeled by a solid-solid phase transition that has a 200-kilometer elevation above the core-mantle boundary under adiabatic temperatures and a Clapeyron slope of about 6 megapascal per kelvin.
Collapse
Affiliation(s)
- I Sidorin
- Seismological Laboratory 252-21, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
34
|
Sidorin I, Gurnis M, Helmberger DV. Dynamics of a phase change at the base of the mantle consistent with seismological observations. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999jb900065] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Illuminating the base of the mantle with diffracted waves. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/gd028p0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|