1
|
Truong C, Bernard S, Le Pape P, Morin G, Baya C, Merrot P, Gorlas A, Guyot F. Production of carbon-containing pyrite spherules induced by hyperthermophilic Thermococcales: a biosignature? Front Microbiol 2023; 14:1145781. [PMID: 37303784 PMCID: PMC10248028 DOI: 10.3389/fmicb.2023.1145781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Thermococcales, a major order of hyperthermophilic archaea inhabiting iron- and sulfur-rich anaerobic parts of hydrothermal deep-sea vents, are known to induce the formation of iron phosphates, greigite (Fe3S4) and abundant quantities of pyrite (FeS2), including pyrite spherules. In the present study, we report the characterization of the sulfide and phosphate minerals produced in the presence of Thermococcales using X-ray diffraction, synchrotron-based X ray absorption spectroscopy and scanning and transmission electron microscopies. Mixed valence Fe(II)-Fe(III) phosphates are interpreted as resulting from the activity of Thermococcales controlling phosphorus-iron-sulfur dynamics. The pyrite spherules (absent in abiotic control) consist of an assemblage of ultra-small nanocrystals of a few ten nanometers in size, showing coherently diffracting domain sizes of few nanometers. The production of these spherules occurs via a sulfur redox swing from S0 to S-2 and then to S-1, involving a comproportionation of (-II) and (0) oxidation states of sulfur, as supported by S-XANES data. Importantly, these pyrite spherules sequester biogenic organic compounds in small but detectable quantities, possibly making them good biosignatures to be searched for in extreme environments.
Collapse
Affiliation(s)
- Chloé Truong
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Sylvain Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Pierre Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Guillaume Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Camille Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Pauline Merrot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Aurore Gorlas
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Wang M, Ruan L, Liu M, Liu Z, He J, Zhang L, Wang Y, Shi H, Chen M, Yang F, Zeng R, He J, Guo C, Chen J. The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment. BMC Genomics 2023; 24:72. [PMID: 36774470 PMCID: PMC9921365 DOI: 10.1186/s12864-023-09166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Vestimentifera (Polychaeta, Siboglinidae) is a taxon of deep-sea worm-like animals living in deep-sea hydrothermal vents, cold seeps, and organic falls. The morphology and lifespan of Ridgeia piscesae, which is the only vestimentiferan tubeworm species found in the hydrothermal vents on the Juan de Fuca Ridge, vary greatly according to endemic environment. Recent analyses have revealed the genomic basis of adaptation in three vent- and seep-dwelling vestimentiferan tubeworms. However, the evolutionary history and mechanism of adaptation in R. piscesae, a unique species in the family Siboglinidae, remain to be investigated. RESULT We assembled a draft genome of R. piscesae collected at the Cathedral vent of the Juan de Fuca Ridge. Comparative genomic analysis showed that vent-dwelling tubeworms with a higher growth rate had smaller genome sizes than seep-dwelling tubeworms that grew much slower. A strong positive correlation between repeat content and genome size but not intron size and the number of protein-coding genes was identified in these deep-sea tubeworm species. Evolutionary analysis revealed that Ridgeia pachyptila and R. piscesae, the two tubeworm species that are endemic to hydrothermal vents of the eastern Pacific, started to diverge between 28.5 and 35 million years ago. Four genes involved in cell proliferation were found to be subject to positive selection in the genome of R. piscesae. CONCLUSION Ridgeia pachyptila and R. piscesae started to diverge after the formation of the Gorda/Juan de Fuca/Explorer ridge systems and the East Pacific Rise. The high growth rates of vent-dwelling tubeworms might be derived from their small genome sizes. Cell proliferation is important for regulating the growth rate in R. piscesae.
Collapse
Affiliation(s)
- Muhua Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China ,grid.12981.330000 0001 2360 039XChina-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Lingwei Ruan
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Meng Liu
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Zixuan Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Jian He
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China ,grid.12981.330000 0001 2360 039XChina-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Long Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Yuanyuan Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Hong Shi
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Mingliang Chen
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Feng Yang
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Runying Zeng
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China. .,Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Conspicuous Smooth and White Egg-Shaped Sulfur Structures on a Deep-Sea Hydrothermal Vent Formed by Sulfide-Oxidizing Bacteria. Microbiol Spectr 2021; 9:e0095521. [PMID: 34468192 PMCID: PMC8557937 DOI: 10.1128/spectrum.00955-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conspicuous egg-shaped, white, and smooth structures were observed at a hydrothermal vent site in the Guaymas Basin, Gulf of California. The gelatinous structures decomposed within hours after sampling. Scanning electron microscopy (SEM) and light microscopy showed that the structure consisted of filaments of less than 0.1 μm thickness, similar to those observed for "Candidatus Arcobacter sulfidicus." SEM-energy-dispersive X-ray spectroscopy (EDS) showed that the filaments were sulfur rich. According to 16S rRNA gene amplicon and fluorescence in situ hybridization (FISH) analyses, Arcobacter, a sulfide oxidizer that is known to produce filamentous elemental sulfur, was among the dominant species in the structure and was likely responsible for its formation. Arcobacter normally produces woolly snowflake like structures in opposed gradients of sulfide and oxygen. In the laboratory, we observed sulfide consumption in the anoxic zone of the structure, suggesting an anaerobic conversion. The sulfide oxidation and decomposition of the structure in the laboratory may be explained by dissolution of the sulfur filaments by reaction with sulfide under formation of polysulfides. IMPORTANCE At the deep-sea Guaymas Basin hydrothermal vent system, sulfide-rich hydrothermal fluids mix with oxygenated seawater, thereby providing a habitat for microbial sulfur oxidation. Microbial sulfur oxidation in the deep sea involves a variety of organisms and processes and can result in the excretion of elemental sulfur. Here, we report on conspicuous white and smooth gelatinous structures found on hot vents. These strange egg-shaped structures were often observed on previous occasions in the Guaymas Basin, but their composition and formation process were unknown. Our data suggest that the notable and highly ephemeral structure was likely formed by the well-known sulfide-oxidizing Arcobacter. While normally Arcobacter produces loose flocs or woolly layers, here smooth gel-like structures were found.
Collapse
|
4
|
Humphris SE, Klein F. Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:315-343. [PMID: 28853997 DOI: 10.1146/annurev-marine-121916-063233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the last four decades, more than 500 sites of seafloor hydrothermal venting have been identified in a range of tectonic environments. These vents represent the seafloor manifestation of hydrothermal convection of seawater through the permeable oceanic basement that is driven by a subsurface heat source. Hydrothermal circulation has fundamental effects on the transfer of heat and mass from the lithosphere to the hydrosphere, the composition of seawater, the physical and chemical properties of the oceanic basement, and vent ecosystems at and below the seafloor. In this review, we compare and contrast the vent fluid chemistry from hydrothermal fields in a range of tectonic settings to assess the relative roles of fluid-mineral equilibria, phase separation, magmatic input, seawater entrainment, and sediment cover in producing the observed range of fluid compositions. We focus particularly on hydrothermal activity in those tectonic environments (e.g., mid-ocean ridge detachment faults, back-arc basins, and island arc volcanoes) where significant progress has been made in the last decade in documenting the variations in vent fluid composition.
Collapse
Affiliation(s)
- Susan E Humphris
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543;
| | - Frieder Klein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
5
|
Sources and Forms of Trace Metals Taken Up by Hydrothermal Vent Mussels, and Possible Adaption and Mitigation Strategies. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/698_2016_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
6
|
Lin TJ, Ver Eecke HC, Breves EA, Dyar MD, Jamieson JW, Hannington MD, Dahle H, Bishop JL, Lane MD, Butterfield DA, Kelley DS, Lilley MD, Baross JA, Holden JF. Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2016; 17:300-323. [PMID: 30123099 PMCID: PMC6094386 DOI: 10.1002/2015gc006091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2- oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall.
Collapse
Affiliation(s)
- T. J. Lin
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - H. C. Ver Eecke
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - E. A. Breves
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - M. D. Dyar
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - J. W. Jamieson
- Department of Earth Sciences, University of Ottawa, Ottawa, Ontario, Canada
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - M. D. Hannington
- Department of Earth Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - H. Dahle
- Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
| | - J. L. Bishop
- SETI Institute/NASA Ames Research Center, Moffett Field, California, USA
| | - M. D. Lane
- Planetary Science Institute, Tucson, Arizona, USA
| | - D. A. Butterfield
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington and NOAA-PMEL, Seattle, Washington, USA
| | - D. S. Kelley
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - M. D. Lilley
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - J. A. Baross
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - J. F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Konn C, Charlou JL, Holm NG, Mousis O. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. ASTROBIOLOGY 2015; 15:381-99. [PMID: 25984920 PMCID: PMC4442600 DOI: 10.1089/ast.2014.1198] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 01/27/2015] [Indexed: 05/23/2023]
Abstract
Both hydrogen and methane are consistently discharged in large quantities in hydrothermal fluids issued from ultramafic-hosted hydrothermal fields discovered along the Mid-Atlantic Ridge. Considering the vast number of these fields discovered or inferred, hydrothermal fluxes represent a significant input of H2 and CH4 to the ocean. Although there are lines of evidence of their abiogenic formation from stable C and H isotope results, laboratory experiments, and thermodynamic data, neither their origin nor the reaction pathways generating these gases have been fully constrained yet. Organic compounds detected in the fluids may also be derived from abiotic reactions. Although thermodynamics are favorable and extensive experimental work has been done on Fischer-Tropsch-type reactions, for instance, nothing is clear yet about their origin and formation mechanism from actual data. Since chemolithotrophic microbial communities commonly colonize hydrothermal vents, biogenic and thermogenic processes are likely to contribute to the production of H2, CH4, and other organic compounds. There seems to be a consensus toward a mixed origin (both sources and processes) that is consistent with the ambiguous nature of the isotopic data. But the question that remains is, to what proportions? More systematic experiments as well as integrated geochemical approaches are needed to disentangle hydrothermal geochemistry. This understanding is of prime importance considering the implications of hydrothermal H2, CH4, and organic compounds for the ocean global budget, global cycles, and the origin of life.
Collapse
Affiliation(s)
- C Konn
- 1Ifremer, Unité Géosciences Marine, Laboratoire de Géochime et Métallogénie, F-29280 Plouzané, France
| | - J L Charlou
- 1Ifremer, Unité Géosciences Marine, Laboratoire de Géochime et Métallogénie, F-29280 Plouzané, France
| | - N G Holm
- 2Department of Geological Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - O Mousis
- 3Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Marseille, France
| |
Collapse
|
8
|
Kawaichi S, Ito N, Yoshida T, Sako Y. Bacterial and archaeal diversity in an iron-rich coastal hydrothermal field in Yamagawa, Kagoshima, Japan. Microbes Environ 2013; 28:405-13. [PMID: 24256999 PMCID: PMC4070711 DOI: 10.1264/jsme2.me13048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Physicochemical characteristics and archaeal and bacterial community structures in an iron-rich coastal hydrothermal field, where the temperature of the most active hot spot reaches above 100°C, were investigated to obtain fundamental information on microbes inhabiting a coastal hydrothermal field. The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H2, CO2, and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H2 or sulfur compounds as their energy source and CO2 as their carbon source, and the organic compounds synthesized by them support the growth of chemoheterotrophic thermophiles, such as members of the order Thermales and the family Desulfurococcaceae. In addition, the dominance of members of the bacterial genus Herbaspirillum in the high temperature bottom layer led us to speculate the temporal formation of mesophilic zones where they can also function as primary producing or nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Satoshi Kawaichi
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University
| | | | | | | |
Collapse
|
9
|
Detection and Characterisation of Mutations Responsible for Allele-Specific Protein Thermostabilities at the Mn-Superoxide Dismutase Gene in the Deep-Sea Hydrothermal Vent Polychaete Alvinella pompejana. J Mol Evol 2013; 76:295-310. [DOI: 10.1007/s00239-013-9559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/27/2013] [Indexed: 12/19/2022]
|
10
|
Flores GE, Campbell JH, Kirshtein JD, Meneghin J, Podar M, Steinberg JI, Seewald JS, Tivey MK, Voytek MA, Yang ZK, Reysenbach AL. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 2011; 13:2158-71. [PMID: 21418499 DOI: 10.1111/j.1462-2920.2011.02463.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.
Collapse
Affiliation(s)
- Gilberto E Flores
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
White SN. Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy. APPLIED SPECTROSCOPY 2010; 64:819-827. [PMID: 20615296 DOI: 10.1366/000370210791666354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Laboratory experiments have been performed using laser Raman spectroscopy to analyze carbon dioxide (CO(2)) and methane (CH(4)) dissolved in water and seawater. Dissolved CO(2) is characterized by bands at approximately 1275 and 1382 Deltacm(-1). Dissolved CH(4) is characterized by a dominant band at approximately 2911 Deltacm(-1). The laboratory instrumentation used for this work is equivalent to the sea-going Raman instrument, DORISS (Deep Ocean Raman In Situ Spectrometer). Limits of quantification and calibration curves were determined for each species. The limits of quantification are approximately 10 mM for CO(2) and approximately 4 mM for CH(4). A ratio technique is used to obtain quantitative information from Raman spectra: the gas bands are referenced to the O-H stretching band of water. The calibration curves relating band height ratios to gas concentration are linear and valid for a range of temperatures, pressures, and salinities. Current instrumentation is capable of measuring the highest dissolved gas concentration observed in end-member hydrothermal fluids. Further development work is needed to improve sensitivity and optimize operational configurations.
Collapse
Affiliation(s)
- Sheri N White
- Department of Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| |
Collapse
|
13
|
Le Bris N, Duperron S. Chemosynthetic communities and biogeochemical energy pathways along the Mid-Atlantic Ridge: The case of Bathymodiolus azoricus. GEOPHYSICAL MONOGRAPH SERIES 2010. [DOI: 10.1029/2008gm000712] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Coumou D, Driesner T, Weis P, Heinrich CA. Phase separation, brine formation, and salinity variation at Black Smoker hydrothermal systems. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jb005764] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Cosson RP, Thiébaut E, Company R, Castrec-Rouelle M, Colaço A, Martins I, Sarradin PM, Bebianno MJ. Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. MARINE ENVIRONMENTAL RESEARCH 2008; 65:405-415. [PMID: 18328554 DOI: 10.1016/j.marenvres.2008.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 05/26/2023]
Abstract
The variability of the bioaccumulation of metals (Ag, Cd, Cu, Fe, Mn and Zn) was extensively studied in the mussel Bathymodiolus azoricus from five hydrothermal vent sites inside three main vent fields of increasing depth along the Mid-Atlantic Ridge: Menez Gwen, Lucky Strike and Rainbow. Metal bioaccumulation varied greatly between vent fields and even between sites inside a vent field with B. azoricus showing a great capacity to accumulate metals. The bioaccumulation of these metals also varied significantly among tissues. The main target was the gills where metals were mainly associated with soluble compounds whereas in the digestive gland they were mainly associated with insoluble compounds. Storage of metals under insoluble forms in B. azoricus seems to be a major pathway for the detoxification of both essential and non-essential metals. Mussels from the studied fields can be discriminated following their metallic load but the segregation relies partially on the composition of the metal-enriched fluids.
Collapse
Affiliation(s)
- Richard P Cosson
- ISOMer-Laboratoire de Biologie Marine, Faculté des Sciences et Techniques, Université de Nantes, BP 92 208, ISOMer - EMI, EA 2663, F-44322 Nantes cedex 3, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
A SIMS study of lithium, boron and chlorine in basalts from Reykjanes (southwestern Iceland). Mikrochim Acta 2008. [DOI: 10.1007/s00604-007-0922-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Edgcomb VP, Molyneaux SJ, Böer S, Wirsen CO, Saito M, Atkins MS, Lloyd K, Teske A. Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes. Extremophiles 2006; 11:329-42. [PMID: 17111090 DOI: 10.1007/s00792-006-0043-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 10/22/2006] [Indexed: 11/26/2022]
Abstract
Growth and survival of hyperthermophilic archaea in their extreme hydrothermal vent and subsurface environments are controlled by chemical and physical key parameters. This study examined the effects of elevated sulfide concentrations, temperature, and acidic pH on growth and survival of two hydrothermal vent archaea (Pyrococcus strain GB-D and Thermococcus fumicolans) under high temperature and pressure regimes. These two strains are members of the Thermococcales, a family of hyperthermophilic, heterotrophic, sulfur-reducing archaea that occur in high densities at vent sites. As actively growing cells, these two strains tolerated regimes of pH, pressure, and temperature that were in most cases not tolerated under severe substrate limitation. A moderate pH of 5.5-7 extends their survival and growth range over a wider range of sulfide concentrations, temperature and pressure, relative to lower pH conditions. T. fumicolans and Pyrococcus strain GB-D grew under very high pressures that exceeded in-situ pressures typical of hydrothermal vent depths, and included deep subsurface pressures. However, under the same conditions, but in the absence of carbon substrates and electron acceptors, survival was generally lower, and decreased rapidly when low pH stress was combined with high pressure and high temperature.
Collapse
Affiliation(s)
- Virginia P Edgcomb
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dauphas N, Rouxel O. Mass spectrometry and natural variations of iron isotopes. MASS SPECTROMETRY REVIEWS 2006; 25:515-50. [PMID: 16463281 DOI: 10.1002/mas.20078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although the processes that govern iron isotope variations in nature are just beginning to be understood, multiple studies attest of the virtue of this system to solve important problems in geosciences and biology. In this article, we review recent advances in the geochemistry, cosmochemistry, and biochemistry of iron isotopes. In Section 2, we briefly address the question of the nucleosynthesis of Fe isotopes. In Section 3, we describe the different methods for purifying Fe and analyzing its isotopic composition. The methods of SIMS, RIMS, and TIMS are presented but more weight is given to measurements by MC-ICPMS. In Section 4, the isotope anomalies measured in extraterrestrial material are briefly discussed. In Section 5, we show how high temperature processes like evaporation, condensation, diffusion, reduction, and phase partitioning can affect Fe isotopic composition. In Section 6, the various low temperature processes causing Fe isotopic fractionation are presented. These involve aqueous and biologic systems.
Collapse
Affiliation(s)
- Nicolas Dauphas
- Origins Laboratory, Department of the Geophysical Sciences, Enrico Fermi Institute, and Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
19
|
Lawrence-Snyder M, Scaffidi J, Angel SM, Michel APM, Chave AD. Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions. APPLIED SPECTROSCOPY 2006; 60:786-90. [PMID: 16854267 DOI: 10.1366/000370206777887161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Laser-induced breakdown spectroscopy (LIBS) is presented for detection of several Group I and II elements (e.g., Na, Ca, Li, and K), as well as Mn and CaOH, in bulk aqueous solution at pressures exceeding 2.76 x 10(7) Pa (276 bar). Preliminary investigations reveal only minor pressure effects on the emission intensity and line width for all elements examined. These effects are found to depend on detector timing and laser pulse energy. The results of these investigations have implications for potential applications of LIBS for in situ multi-elemental detection in deep-ocean environments.
Collapse
Affiliation(s)
- Marion Lawrence-Snyder
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
20
|
Multiphase Thermohaline Convection in the Earth’s Crust: I. A New Finite Element – Finite Volume Solution Technique Combined With a New Equation of State for NaCl–H2O. Transp Porous Media 2006. [DOI: 10.1007/s11242-005-0108-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Geiger S, Driesner T, Heinrich CA, Matthäi SK. Multiphase Thermohaline Convection in the Earth’s Crust: II. Benchmarking and Application of a Finite Element – Finite Volume Solution Technique with a NaCl–H2O Equation of State. Transp Porous Media 2006. [DOI: 10.1007/s11242-005-0109-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Gamo T, Ishibashi J, Tsunogai U, Okamura K, Chiba H. Unique geochemistry of submarine hydrothermal fluids from arc-back-arc settings of the western Pacific. BACK-ARC SPREADING SYSTEMS: GEOLOGICAL, BIOLOGICAL, CHEMICAL, AND PHYSICAL INTERACTIONS 2006. [DOI: 10.1029/166gm08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 2004; 8:269-82. [PMID: 15309563 DOI: 10.1007/s00792-004-0386-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 02/18/2004] [Indexed: 10/26/2022]
Abstract
Subsurface microbial communities supported by geologically and abiologically derived hydrogen and carbon dioxide from the Earth's interior are of great interest, not only with regard to the nature of primitive life on Earth, but as potential analogs for extraterrestrial life. Here, for the first time, we present geochemical and microbiological evidence pointing to the existence of hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) dominated by hyperthermophilic methanogens beneath an active deep-sea hydrothermal field in the Central Indian Ridge. Geochemical and isotopic analyses of gaseous components in the hydrothermal fluids revealed heterogeneity of both concentration and carbon isotopic compositions of methane between the main hydrothermal vent (0.08 mM and -13.8 per thousand PDB, respectively) and the adjacent divergent vent site (0.2 mM and -18.5 per thousand PDB, respectively), representing potential subsurface microbial methanogenesis, at least in the divergent vent emitting more 13C-depleted methane. Extremely high abundance of magmatic energy sources such as hydrogen (2.5 mM) in the fluids also encourages a hydrogen-based, lithoautotrophic microbial activity. Both cultivation and cultivation-independent molecular analyses suggested the predominance of Methanococcales members in the superheated hydrothermal emissions and chimney interiors along with the other major microbial components of Thermococcales members. These results imply that a HyperSLiME, consisting of methanogens and fermenters, occurs in this tectonically active subsurface zone, strongly supporting the existence of hydrogen-driven subsurface microbial communities.
Collapse
Affiliation(s)
- Ken Takai
- Subground Animalcule Retrieval (SUGAR) Project, Frontier Research System for Extremophiles, Japan Marine Science and Technology Center (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Environmental conditions within active seafloor vent structures: Sensitivity to vent fluid composition and fluid flow. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/144gm09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Illuminating subseafloor ecosystems using microbial tracers. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/144gm18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Geochemical energy sources that support the subsurface biosphere. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/144gm10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Weber RE, Hourdez S, Knowles F, Lallier F. Hemoglobin function in deep-sea and hydrothermal-vent endemic fish: Symenchelis parasitica (Anguillidae) and Thermarces cerberus (Zoarcidae). J Exp Biol 2003; 206:2693-702. [PMID: 12819275 DOI: 10.1242/jeb.00475] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deep-sea hydrothermal vents probably provide the harshest physico-chemical conditions confronting metazoan animals in nature. Given the absence of information on hemoglobin (Hb) function in hydrothermal-vent vertebrates, and the complex molecular and functional adaptations observed in hydrothermal-vent invertebrates, we investigated the oxygenation reactions of Hbs from the vent-endemic zoarcid Thermarces cerberus and the deep-sea anguillid Symenchelis parasitica from adjacent habitats. Electrophoretically cathodic and anodic isoHbs from S. parasitica exhibit radical differences in O(2) affinity and pH and organic phosphate (ATP) sensitivities, reflecting a division of labor as in other 'class II' fish that express both Hb types. Remarkably, the cathodic Hb (I) lacks chloride sensitivity, and the anodic Hb (II) shows anticooperativity near half-saturation at low temperature. T. cerberus isoHbs exhibit similar affinities and pH sensitivities ('class I' pattern) but much higher O(2) affinities than those observed in Hbs of the temperate, shallow-water zoarcid Zoarces viviparus, which, unless compensated, reveals markedly higher blood O(2) affinities in the former species. The temperature sensitivity of O(2) binding to T. cerberus Hbs and the anodic S. parasitica Hb, which have normal Bohr effects, is decreased by endothermic proton dissociation, which reduces the effects of ambient temperature variations on O(2) affinity. In the cathodic S. parasitica Hb, similar reduction appears to be associated with endothermic conformational changes that accompany the oxygenation reaction.
Collapse
Affiliation(s)
- Roy E Weber
- Department of Zoophysiology, C.F. Møllers Alle, Building 131, University of Aarhus, DK 8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
28
|
Gillis KM, Muehlenbachs K, Stewart M, Gleeson T, Karson J. Fluid flow patterns in fast spreading East Pacific Rise crust exposed at Hess Deep. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jb000038] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Cochran JR, Buck WR. Near-axis subsidence rates, hydrothermal circulation, and thermal structure of mid-ocean ridge crests. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jb000379] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Elsaied H, Naganuma T. Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 2001; 67:1751-65. [PMID: 11282630 PMCID: PMC92794 DOI: 10.1128/aem.67.4.1751-1765.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Accepted: 02/02/2001] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, E.C. 4.1.1.39) large-subunit genes of deep-sea microorganisms was analyzed. Bulk genomic DNA was isolated from seven samples, including samples from the Mid-Atlantic Ridge and various deep-sea habitats around Japan. The kinds of samples were hydrothermal vent water and chimney fragment; reducing sediments from a bathyal seep, a hadal seep, and a presumed seep; and symbiont-bearing tissues of the vent mussel, Bathymodiolus sp., and the seep vestimentiferan tubeworm, Lamellibrachia sp. The RuBisCO genes that encode both form I and form II large subunits (cbbL and cbbM) were amplified by PCR from the seven deep-sea sample DNA populations, cloned, and sequenced. From each sample, 50 cbbL clones and 50 cbbM clones, if amplified, were recovered and sequenced to group them into operational taxonomic units (OTUs). A total of 29 OTUs were recorded from the 300 total cbbL clones, and a total of 24 OTUs were recorded from the 250 total cbbM clones. All the current OTUs have the characteristic RuBisCO amino acid motif sequences that exist in other RuBisCOs. The recorded OTUs were related to different RuBisCO groups of proteobacteria, cyanobacteria, and eukarya. The diversity of the RuBisCO genes may be correlated with certain characteristics of the microbial habitats. The RuBisCO sequences from the symbiont-bearing tissues showed a phylogenetic relationship with those from the ambient bacteria. Also, the RuBisCO sequences of known species of thiobacilli and those from widely distributed marine habitats were closely related to each other. This suggests that the Thiobacillus-related RuBisCO may be distributed globally and contribute to the primary production in the deep sea.
Collapse
Affiliation(s)
- H Elsaied
- School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima 739-8528, Japan
| | | |
Collapse
|
31
|
Humphris SE, Cann JR. Constraints on the energy and chemical balances of the modern TAG and ancient Cyprus seafloor sulfide deposits. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900289] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Reysenbach AL, Longnecker K, Kirshtein J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 2000; 66:3798-806. [PMID: 10966393 PMCID: PMC92223 DOI: 10.1128/aem.66.9.3798-3806.2000] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity was determined for a microbial community obtained from an in situ growth chamber placed on a deep-sea hydrothermal vent on the Mid-Atlantic Ridge (23 degrees 22' N, 44 degrees 57' W). The chamber was deployed for 5 days, and the temperature within the chamber gradually decreased from 70 to 20 degrees C. Upon retrieval of the chamber, the DNA was extracted and the small-subunit rRNA genes (16S rDNA) were amplified by PCR using primers specific for the Archaea or Bacteria domain and cloned. Unique rDNA sequences were identified by restriction fragment length polymorphisms, and 38 different archaeal and bacterial phylotypes were identified from the 85 clones screened. The majority of the archaeal sequences were affiliated with the Thermococcales (71%) and Archaeoglobales (22%) orders. A sequence belonging to the Thermoplasmales confirms that thermoacidophiles may have escaped enrichment culturing attempts of deep-sea hydrothermal vent samples. Additional sequences that represented deeply rooted lineages in the low-temperature eurarchaeal (marine group II) and crenarchaeal clades were obtained. The majority of the bacterial sequences obtained were restricted to the Aquificales (18%), the epsilon subclass of the Proteobacteria (epsilon-Proteobacteria) (40%), and the genus Desulfurobacterium (25%). Most of the clones (28%) were confined to a monophyletic clade within the epsilon-Proteobacteria with no known close relatives. The prevalence of clones related to thermophilic microbes that use hydrogen as an electron donor and sulfur compounds (S(0), SO(4), thiosulfate) indicates the importance of hydrogen oxidation and sulfur metabolism at deep-sea hydrothermal vents. The presence of sequences that are related to sequences from hyperthermophiles, moderate thermophiles, and mesophiles suggests that the diversity obtained from this analysis may reflect the microbial succession that occurred in response to the shift in temperature and possible associated changes in the chemistry of the hydrothermal fluid.
Collapse
Affiliation(s)
- A L Reysenbach
- Department of Environmental Biology, Portland State University, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
33
|
Wheat CG, Jannasch HW, Plant JN, Moyer CL, Sansone FJ, McMurtry GM. Continuous sampling of hydrothermal fluids from Loihi Seamount after the 1996 event. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900088] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Wheat CG, Elderfield H, Mottl MJ, Monnin C. Chemical composition of basement fluids within an oceanic ridge flank: Implications for along-strike and across-strike hydrothermal circulation. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900070] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Von Damm KL. Chemistry of hydrothermal vent fluids from 9°-10°N, East Pacific Rise: “Time zero,” the immediate posteruptive period. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999jb900414] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Wetzel LR, Shock EL. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999jb900382] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
McCollom TM. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999je001126] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
|
39
|
Alt JC, Teagle DAH, Brewer T, Shanks WC, Halliday A. Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98jb00598] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Wilcock WSD. Cellular convection models of mid-ocean ridge hydrothermal circulation and the temperatures of black smoker fluids. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/97jb03252] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Wheat CG, Mottl MJ, Baker ET, Feely RA, Lupton JE, Sansone FJ, Resing JA, Lebon GT, Becker NC. Chemical plumes from low-temperature hydrothermal venting on the eastern flank of the Juan de Fuca Ridge. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/96jb03890] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Lowell RP, Germanovich LN. Evolution of a brine-saturated layer at the base of a ridge-crest hydrothermal system. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97jb00264] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Kinoshita M, Yamano M. Hydrothermal regime and constraints on reservoir depth of the Jade site in the Mid-Okinawa Trough inferred from heat flow measurements. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/96jb03556] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|