Nishimura Y, Lyons LR, Gabrielse C, Weygand JM, Donovan EF, Angelopoulos V. Relative contributions of large-scale and wedgelet currents in the substorm current wedge.
EARTH, PLANETS, AND SPACE : EPS 2020;
72:106. [PMID:
32728343 PMCID:
PMC7373217 DOI:
10.1186/s40623-020-01234-x]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
We examined how much large-scale and localized upward and downward currents contribute to the substorm current wedge (SCW), and how they evolve over time, using the THEMIS all-sky imagers (ASIs) and ground magnetometers. One type of events is dominated by a single large-scale wedge, with upward currents over the surge and broad downward currents poleward-eastward of the surge. The other type of events is a composite of large-scale wedge and wedgelets associated with streamers, with each wedgelet having comparable intensity to the large-scale wedge currents. Among 17 auroral substorms with wide ASI coverage, the composite current type is more frequent than the single large-scale wedge type. The dawn-dusk size of each wedgelet is ~ 600 km in the ionosphere (~ 3.2 R E in the magnetotail, comparable to the flow channel size). We suggest that substorms have more than one type of SCW, and the composite current type is more frequent.
Collapse