1
|
Affiliation(s)
- Rommel B. Viana
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
2
|
Yelle RV, McConnell JC, Sandel BR, Broadfoot AL. The dependence of electroglow on the solar flux. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p15110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Khurana KK, Kivelson MG. Inference of the angular velocity of plasma in the Jovian magnetosphere from the sweepback of magnetic field. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/92ja01890] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
|
5
|
Herbert F. The Uranian corona as a charge exchange cascade of plasma sheet protons. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/92ja02735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Eviatar A, Barbosa DD. Jovian magnetospheric neutral wind and auroral precipitation flux. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja089ia09p07393] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Scudder JD, Sittler EC, Bridge HS. A survey of the plasma electron environment of Jupiter: A view from Voyager. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja086ia10p08157] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Singhal RP, Bhardwaj A. Monte Carlo simulation of photoelectron energization in parallel electric fields: Electroglow on Uranus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/90ja02749] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Kumar S. Photochemistry of SO2in the atmosphere of Io and implications on atmospheric escape. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja087ia03p01677] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Alexander JK, Carr TD, Thieman JR, Schauble JJ, Riddle AC. Synoptic observations of Jupiter's radio emissions: Average statistical properties observed by Voyager. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja086ia10p08529] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Glass-Maujean M, Klumpp S, Werner L, Ehresmann A, Schmoranzer H. Transition probabilities from the ground state of the states of H2. Mol Phys 2010. [DOI: 10.1080/00268970701271935] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Broadfoot AL, Atreya SK, Bertaux JL, Blamont JE, Dessler AJ, Donahue TM, Forrester WT, Hall DT, Herbert F, Holberg JB, Hunter DM, Krasnopolsky VA, Linick S, Lunine JI, McConnell JC, Moos HW, Sandel BR, Schneider NM, Shemansky DE, Smith GR, Strobel DF, Yelle RV. Ultraviolet spectrometer observations of neptune and triton. Science 2010; 246:1459-66. [PMID: 17756000 DOI: 10.1126/science.246.4936.1459] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.
Collapse
|
13
|
Pan WC, Chen IC, Huang TP, Yuh JY, Lee YY. Spectra of atomic sulfur D1 in transitions to autoionizing Rydberg states in the region of 75 800–89 500 cm−1. J Chem Phys 2008; 129:134305. [DOI: 10.1063/1.2982804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
|
15
|
Yang X, Zhou J, Jones B, Ng CY, Jackson WM. Vacuum ultraviolet excitation spectroscopy of the autoionizing Rydberg states of atomic sulfur in the 73350–84950cm−1 frequency range. J Chem Phys 2008; 128:084303. [DOI: 10.1063/1.2829403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Zhou J, Jones B, Yang X, Jackson WM, Ng CY. A vacuum ultraviolet laser photoionization and pulsed field ionization study of nascent S(P2,1,03) and S(D21) formed in the 193.3nm photodissociation of CS2. J Chem Phys 2008; 128:014305. [DOI: 10.1063/1.2816749] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Gladstone GR, Stern SA, Slater DC, Versteeg M, Davis MW, Retherford KD, Young LA, Steffl AJ, Throop H, Parker JW, Weaver HA, Cheng AF, Orton GS, Clarke JT, Nichols JD. Jupiter's Nightside Airglow and Aurora. Science 2007; 318:229-31. [DOI: 10.1126/science.1147613] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- G. Randall Gladstone
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - S. Alan Stern
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - David C. Slater
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Maarten Versteeg
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Michael W. Davis
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Kurt D. Retherford
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Leslie A. Young
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Andrew J. Steffl
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Henry Throop
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Joel Wm. Parker
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Harold A. Weaver
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Andrew F. Cheng
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Glenn S. Orton
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - John T. Clarke
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Jonathan D. Nichols
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| |
Collapse
|
18
|
Moses JI, Fouchet T, Bézard B, Gladstone GR, Lellouch E, Feuchtgruber H. Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002411] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. I. Moses
- Lunar and Planetary Institute; Houston Texas USA
| | - T. Fouchet
- LESIA; Observatoire de Paris; Meudon France
- Université Paris 6; Paris France
| | - B. Bézard
- LESIA; Observatoire de Paris; Meudon France
| | - G. R. Gladstone
- Space Sciences Department; Southwest Research Institute; San Antonio Texas USA
| | | | - H. Feuchtgruber
- Max-Planck-Institut für Extraterrestrische Physik; Garching Germany
| |
Collapse
|
19
|
Huang J, Xu D, Stuchebrukhov A, Jackson WM. Single-photon spectroscopy of singlet sulfur atoms and the autoionization lifetime measurements of the superexcited singlet states. J Chem Phys 2005; 122:144321. [PMID: 15847536 DOI: 10.1063/1.1875032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Single-photon excitation spectra from the lowest singlet (1)D(2) level of sulfur atoms were recorded with a tunable vacuum ultraviolet (VUV) radiation source generated by frequency tripling in noble gases. The photolysis of CS(2) at 193 nm was used to produce the singlet S((1)D(2)) sulfur atoms that were then excited to neutral superexcited states with the tunable VUV radiation. These superexcited states undergo autoionization into the first ionization continuum state of S(+)((4)S(3/2) (o))+e(-), which is not directly accessible from the S((1)D(2)) state via an allowed transition. The excitation spectra were recorded by monitoring the S(+) signal in a velocity imaging apparatus while scanning the VUV excitation wavelength. Three new lines were observed in the spectra which have not been previously reported. The full widths at half maximum (FWHM) of each of the observed transitions were determined by fitting the profiles of each absorption resonances with the Fano formula. Autoionization lifetimes tau of these singlet superexcited states were obtained from FWHM using the Uncertainty Principle. Abnormal autoionization lifetimes were found for the 3s(2)3p(3)((2)D(o))nd((1)D(2)) and the 3s(2)3p(3)((2)D(o))ns((1)D(2)) Rydberg series, in which tau(5d) and tau(7s) are shorter than tau(4d) and tau(6s), respectively. This is contrary to the well-known scaling law of tau(n*) proportional, variantn(*3), which should be followed within a series unless there exist perturbations from other series or new channels open up to which some members of the series can decay. Possible perturbations from the nearby triplet series are suspected for causing the broadening of the 5d and 7s levels.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
20
|
Huang J, Xu D, Stuchebrukhov A, Jackson WM. Measurement of the autoionization lifetime of the superexcited atomic sulfur S(3s23p3(2Do)4d) state using tunable vacuum ultraviolet (VUV) radiation. CAN J CHEM 2004. [DOI: 10.1139/v04-039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new method is described that combines a tunable coherent vacuum ultraviolet (VUV) radiation source and an ion velocity imaging apparatus to study the autoionization of superexcited sulfur atoms. The photolysis of CS2 at 193 nm is used to produce metastable sulfur atoms in the 1D2 state. The S(1D2) atom is then directly excited to the neutral superexcited state 3s23p3(2Do)4d (1Do2) at 11.317 eV with a tunable VUV photon at ~121.896 nm. This excited state then undergoes autoionization into the first ionization continuum state of S+(4So3/2) + e, which is not directly accessible from the S(1D2) state through optical transition. By monitoring the S+ signal in the time-of-flight mass spectrometer while scanning the excitation wavelength, the line profile of the 3s23p34d 1Do2 ← 3s23p4 1D2 transition is recorded and found to have a full width at half maximum (FWHM) of 0.9 cm1. This has been used to determine an autoionization lifetime of the neutral superexcited 3s23p34d 1Do2 state of 5.9 ps. The accurate measurement of the autoionization lifetime provides a benchmark for testing fundamental theoretical models of processes occurring in excited states of atoms. Key words: autoionization, atomic sulfur, vacuum ultraviolet (VUV), full width at half maximum (FWHM).
Collapse
|
21
|
Mauk BH. Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003ja010270] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
André N. Low-frequency waves and instabilities in stratified, gyrotropic, multicomponent plasmas: Theory and application to plasma transport in the Io torus. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004ja010599] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
|
24
|
Magnetosphere-ionosphere coupling at earth, jupiter, and beyond. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/130gm07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Southwood DJ, Kivelson MG. A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000ja000236] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Frank LA, Paterson WR. Observations of plasmas in the Io torus with the Galileo spacecraft. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999ja000250] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Perry JJ, Kim YH, Fox JL, Porter HS. Chemistry of the Jovian auroral ionosphere. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999je900022] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Crary FJ, Bagenal F, Frank LA, Paterson WR. Galileo plasma spectrometer measurements of composition and temperature in the Io plasma torus. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/1998ja900003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Ajello J, Shemansky D, Pryor W, Tobiska K, Hord C, Stephens S, Stewart I, Clarke J, Simmons K, McClintock W, Barth C, Gebben J, Miller D, Sandel B. Galileo orbiter ultraviolet observations of Jupiter aurora. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je00832] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Connerney JEP, Acuña MH, Ness NF, Satoh T. New models of Jupiter's magnetic field constrained by the Io flux tube footprint. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/97ja03726] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Waite JH, Gladstone GR, Lewis WS, Drossart P, Cravens TE, Maurellis AN, Mauk BH, Miller S. Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures. Science 1997; 276:104-8. [PMID: 9082978 DOI: 10.1126/science.276.5309.104] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Observations with the High Resolution Imager on the Rontgensatellit reveal x-ray emissions from Jupiter's equatorial latitudes. The observed emissions probably result from the precipitation of energetic (>300 kiloelectron volts per atomic mass unit) sulfur and oxygen ions out of Jupiter's inner radiation belt. Model calculations of the energy deposition by such heavy ion precipitation and of the resulting atmospheric heating rates indicate that this energy source can contribute to the high exospheric temperatures(>800 kelvin at 0.01 microbar) measured by the Galileo probe's Atmospheric Structure Instrument. Low-latitude energetic particle precipitation must therefore be considered, in addition to other proposed mechanisms such as gravity waves and soft electron precipitation, as an important source of heat for Jupiter's thermosphere.
Collapse
Affiliation(s)
- JH Waite
- J. H. Waite Jr., G. R. Gladstone, W. S. Lewis, Department of Space Science, Southwest Research Institute, Post Office Box 28510, San Antonio, TX 78228-0510, USA. P. Drossart, DESPA, Observatoire de Paris, F-92195 Meudon Cedex, France. T. E. Cravens and A. N. Maurellis, Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045-2151, USA. B. H. Mauk, Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723-6099, USA. S. Miller, Department of History, Philosophy, and Communication in Science, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Anglin JD, Burrows JR, Mu JL, Wilson MD. Trapped energetic ions in Jupiter's inner magnetosphere. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/96ja02681] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Clarke JT, Ballester GE, Trauger J, Evans R, Connerney JEP, Stapelfeldt K, Crisp D, Feldman PD, Burrows CJ, Casertano S, Gallagher JS, Griffiths RE, Hester JJ, Hoessel JG, Holtzman JA, Krist JE, Meadows V, Mould JR, Scowen PA, Watson AM, Westphal JA. Far-Ultraviolet Imaging of Jupiter's Aurora and the Io “Footprint”. Science 1996. [DOI: 10.1126/science.274.5286.404] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- John T. Clarke
- J. T. Clarke and G. E. Ballester, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gilda E. Ballester
- J. T. Clarke and G. E. Ballester, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Trauger
- J. Trauger, R. Evans, K. Stapelfeldt, D. Crisp, V. Meadows, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Robin Evans
- J. Trauger, R. Evans, K. Stapelfeldt, D. Crisp, V. Meadows, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - J E. P. Connerney
- J. E. P. Connerney, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Karl Stapelfeldt
- J. Trauger, R. Evans, K. Stapelfeldt, D. Crisp, V. Meadows, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - David Crisp
- J. Trauger, R. Evans, K. Stapelfeldt, D. Crisp, V. Meadows, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Paul D. Feldman
- P. D. Feldman and R. E. Griffiths, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher J. Burrows
- C. J. Burrows, S. Casertano, J. E. Krist, Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - Stefano Casertano
- C. J. Burrows, S. Casertano, J. E. Krist, Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - John S. Gallagher
- J. S. Gallagher III and J. G. Hoessel, Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Richard E. Griffiths
- P. D. Feldman and R. E. Griffiths, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J. Jeff Hester
- J. J. Hester and P. A. Scowen, Department of Astronomy, Arizona State University, Tempe, AZ 85287, USA
| | - John G. Hoessel
- J. S. Gallagher III and J. G. Hoessel, Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Jon A. Holtzman
- J. A. Holtzman and A. M. Watson, Department of Astronomy, New Mexico State University, Las Cruces, NM 88003, USA
| | - John E. Krist
- C. J. Burrows, S. Casertano, J. E. Krist, Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - Vikki Meadows
- J. Trauger, R. Evans, K. Stapelfeldt, D. Crisp, V. Meadows, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Jeremy R. Mould
- J. R. Mould, Mount Stromlo and Siding Springs Observatories, Australian National University, Weston Creek, ACT 2611, Australia
| | - Paul A. Scowen
- J. J. Hester and P. A. Scowen, Department of Astronomy, Arizona State University, Tempe, AZ 85287, USA
| | - Alan M. Watson
- J. A. Holtzman and A. M. Watson, Department of Astronomy, New Mexico State University, Las Cruces, NM 88003, USA
| | - James A. Westphal
- J. A. Westphal, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
35
|
Ballester GE, Clarke JT, Trauger JT, Harris WM, Stapelfeldt KR, Crisp D, Evans RW, Burgh EB, Burrows CJ, Casertano S, Gallagher JS, Griffiths RE, Hester JJ, Hoessel JG, Holtzman JA, Krist JE, Meadows V, Mould JR, Sahai R, Scowen PA, Watson AM, Westphal JA. Time-Resolved Observations of Jupiter's Far-Ultraviolet Aurora. Science 1996. [DOI: 10.1126/science.274.5286.409] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Gilda E. Ballester
- G. E. Ballester and J. T. Clarke, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - John T. Clarke
- G. E. Ballester and J. T. Clarke, Space Physics Research Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - John T. Trauger
- J. T. Trauger, K. R. Stapelfeldt, D. Crisp, R. W. Evans, V. Meadows, R. Sahai, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Walter M. Harris
- W. M. Harris, J. S. Gallagher III, J. G. Hoessel, Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Karl R. Stapelfeldt
- J. T. Trauger, K. R. Stapelfeldt, D. Crisp, R. W. Evans, V. Meadows, R. Sahai, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - David Crisp
- J. T. Trauger, K. R. Stapelfeldt, D. Crisp, R. W. Evans, V. Meadows, R. Sahai, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Robin W. Evans
- J. T. Trauger, K. R. Stapelfeldt, D. Crisp, R. W. Evans, V. Meadows, R. Sahai, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Eric B. Burgh
- E. B. Burgh, C. J. Burrows, R. E. Griffiths, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher J. Burrows
- E. B. Burgh, C. J. Burrows, R. E. Griffiths, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stefano Casertano
- S. Casertano and J. E. Krist, Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - John S. Gallagher
- W. M. Harris, J. S. Gallagher III, J. G. Hoessel, Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Richard E. Griffiths
- E. B. Burgh, C. J. Burrows, R. E. Griffiths, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J. Jeff Hester
- J. J. Hester and P. A. Scowen, Department of Astronomy, Arizona State University, Tempe, AZ 85287, USA
| | - John G. Hoessel
- W. M. Harris, J. S. Gallagher III, J. G. Hoessel, Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Jon A. Holtzman
- J. A. Holtzman and A. M. Watson, Department of Astronomy, New Mexico State University, Las Cruces, NM 88003, USA
| | - John E. Krist
- S. Casertano and J. E. Krist, Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - Vikki Meadows
- J. T. Trauger, K. R. Stapelfeldt, D. Crisp, R. W. Evans, V. Meadows, R. Sahai, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Jeremy R. Mould
- J. R. Mould, Mount Stromlo and Siding Springs Observatories, Australian National University, Weston Creek, ACT 2611, Australia
| | - Raghvendra Sahai
- J. T. Trauger, K. R. Stapelfeldt, D. Crisp, R. W. Evans, V. Meadows, R. Sahai, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Paul A. Scowen
- J. J. Hester and P. A. Scowen, Department of Astronomy, Arizona State University, Tempe, AZ 85287, USA
| | - Alan M. Watson
- J. A. Holtzman and A. M. Watson, Department of Astronomy, New Mexico State University, Las Cruces, NM 88003, USA
| | - James A. Westphal
- J. A. Westphal, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
36
|
Mauk BH, Gary SA, Kane M, Keath EP, Krimigis SM, Armstrong TP. Hot plasma parameters of Jupiter's inner magnetosphere. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96ja00006] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Yelle RV, Young LA, Vervack RJ, Young R, Pfister L, Sandel BR. Structure of Jupiter's upper atmosphere: Predictions for Galileo. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/95je03384] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Grodent D, Dols V, Gérard JC, Rego D. The equatorial boundary of the ultraviolet Jovian north aurora observed with multispectral Hubble Space Telescope images. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/95je03259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Gérard JC, Grodent D, Dols V, Prangé R, Waite JH, Gladstone GR, Franke KA, Paresce F, Storrs A, Jaffel LB. A Remarkable Auroral Event on Jupiter Observed in the Ultraviolet with the Hubble Space Telescope. Science 1994; 266:1675-8. [PMID: 17775626 DOI: 10.1126/science.266.5191.1675] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two sets of ultraviolet images of the Jovian north aurora were obtained with the Faint Object Camera on board the Hubble Space Telescope. The first series shows an intense discrete arc in near corotation with the planet. The maximum apparent molecular hydrogen emission rate corresponds to an electron precipitation of approximately 1 watt per square meter, which is about 30,000 times larger than the solar heating by extreme ultraviolet radiation. Such a particle heating rate of the auroral upper atmosphere of Jupiter should cause a large transient temperature increase and generate strong thermospheric winds. Twenty hours after initial observation, the discrete arc had decreased in brightness by more than one order of magnitude. The time scale and magnitude of the change in the ultraviolet aurora leads us to suggest that the discrete Jovian auroral precipitation is related to large-scale variations in the current system, as is the case for Earth's discrete aurorae.
Collapse
|
40
|
Carbary JF, Darlington EH, Harris TJ, McEvaddy PJ, Mayr MJ, Peacock K, Meng CI. Ultraviolet and visible imaging and spectrographic imaging instrument. APPLIED OPTICS 1994; 33:4201-4213. [PMID: 20935774 DOI: 10.1364/ao.33.004201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Ultraviolet and Visible Imaging and Spectrographic Imaging experiment consists of five spectrographic imagers and four imagers. These nine sensors provide spectrographic and imaging capabilities from 110 to 900 nm. The spectrographic imagers share an off-axis design in which selectable slits alternate fields of view (1.00° × 0.10° or 1.00° × 0.05°) and spectral resolutions between 0.5 and 4 nm. Image planes of the spectrographic imager have a programmable spectral dimension with 68, 136, or 272 pixels across each individual spectral band, and a programmable spatial dimension with 5, 10, 20, or 40 pixels across the 1° slit length. A scan mirror sweeps the slit through a second spatial dimension to generate a 1° × 1° spectrographic image once every 5, 10, or 20 s, depending on the scan rate. The four imagers provide narrow-field (1.28° × 1.59°) and wide-field (10.5° × 13.1°) viewing. Each imager has a six-position filter wheel that selects various spectral regimes and neutral densities. The nine sensors ut lize intensified CCD detectors that have an intrascene dynamic range of ~ 10(3) and an interscene dynamic range of ~ 10(5); neutral-density filters provide an additional dynamic range of ~ 10(2-3). The detector uses an automatic gain control that permits the sensors to adjust to scenes of varying intensity. The sensors have common boresights and can operate separately, simultaneously, or synchronously. To be launched aboard the Midcourse Space Experiment spacecraft in the mid-1990's, the ultraviolet and visible imaging and spectrographic imaging instrument will investigate a multitude of celestial, atmospheric, and point sources during its planned 4-yr life.
Collapse
|
41
|
Waite JH, Bagenal F, Seward F, Na C, Gladstone GR, Cravens TE, Hurley KC, Clarke JT, Elsner R, Stern SA. ROSAT observations of the Jupiter aurora. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/94ja01005] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Connerney JE, Baron R, Satoh T, Owen T. Images of Excited H3+ at the Foot of the lo Flux Tube in Jupiter's Atmosphere. Science 1993; 262:1035-8. [PMID: 17782051 DOI: 10.1126/science.262.5136.1035] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The electrodynamic interaction between lo and the Jovian magnetosphere drives currents to and from the planet's ionosphere, where H(3)(+) emission is excited. Direct images of this phenomenon were obtained with the ProtoCAM infrared camera at the National Aeronautics and Space Administration's 3-m Infrared Telescope Facility. The emissions are localized to the instantaneous foot of the lo flux tube, approximately 8 degrees equatorward of the more intense auroral H(3)(+) emission associated with higher magnetic latitudes. The foot of the lo flux tube leads that of (undisturbed) model magnetic field lines passing through lo by 15 degrees to 20 degrees in longitude and is less visible in the northern hemisphere at longitudes where the surface magnetic field strength is greatest. These data favor the unipolar inductor model of the lo interaction and provide insight into the source location and generation of Jovian decameter radio emission.
Collapse
|
43
|
Livengood TA, Kostiuk T, Espenak F, Goldstein JJ. Temperature and abundances in the Jovian auroral stratosphere: 1. Ethane as a probe of the millibar region. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/93je01043] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Kostiuk T, Romani P, Espenak F, Livengood TA, Goldstein JJ. Temperature and abundances in the Jovian auroral stratosphere: 2. Ethylene as a probe of the microbar region. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/93je01332] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Gérard JC, Dols V, Paresce F, Prangé R. Morphology and time variation of the Jovian far UV aurora: Hubble space telescope observations. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/93je01334] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Hall DT, Shemansky DE, Judge DL, Gangopadhyay P, Gruntman MA. Heliospheric hydrogen beyond 15 AU: Evidence for a termination shock. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/93ja01175] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Lanzerotti LJ, Armstrong TP, Gold RE, Anderson KA, Krimigis SM, Lin RP, Pick M, Roelof EC, Sarris ET, Simnett GM, Maclennan CG, Choo HT, Tappin SJ. The Hot Plasma Environment at Jupiter: Ulysses Results. Science 1992; 257:1518-24. [PMID: 17776161 DOI: 10.1126/science.257.5076.1518] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.
Collapse
|
48
|
Kim YH, Fox JL, Porter HS. Densities and vibrational distribution of H3+in the Jovian auroral ionosphere. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92je00454] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Singhal RP, Chakravarty SC, Bhardwaj A, Prasad B. Energetic electron precipitation in Jupiter's upper atmosphere. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92je01894] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Bishop J, Atreya SK, Romani PN, Sandel BR, Herbert F. Voyager 2 ultraviolet spectrometer solar occultations at Neptune: Constraints on the abundance of methane in the stratosphere. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92je00959] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|