1
|
Nikitczuk MP, Bebout GE, Geiger CA, Ota T, Kunihiro T, Mustard JF, Halldórsson SA, Nakamura E. Nitrogen Incorporation in Potassic and Micro- and Meso-Porous Minerals: Potential Biogeochemical Records and Targets for Mars Sampling. ASTROBIOLOGY 2022; 22:1293-1309. [PMID: 36074082 PMCID: PMC9618379 DOI: 10.1089/ast.2021.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
We measured the N concentrations and isotopic compositions of 44 samples of terrestrial potassic and micro- and meso-porous minerals and a small number of whole-rocks to determine the extent to which N is incorporated and stored during weathering and low-temperature hydrothermal alteration in Mars surface/near-surface environments. The selection of these minerals and other materials was partly guided by the study of altered volcanic glass from Antarctica and Iceland, in which the incorporation of N as NH4+ in phyllosilicates is indicated by correlated concentrations of N and the LILEs (i.e., K, Ba, Rb, Cs), with scatter likely related to the presence of exchanged, occluded/trapped, or encapsulated organic/inorganic N occurring within structural cavities (e.g., in zeolites). The phyllosilicates, zeolites, and sulfates analyzed in this study contain between 0 and 99,120 ppm N and have δ15Nair values of -34‰ to +65‰. Most of these minerals, and the few siliceous hydrothermal deposits that were analyzed, have δ15N consistent with the incorporation of biologically processed N during low-temperature hydrothermal or weathering processes. Secondary ion mass spectrometry on altered hyaloclastites demonstrates the residency of N in smectites and zeolites, and silica. We suggest that geological materials known on Earth to incorporate and store N and known to be abundant at, or near, the surface of Mars should be considered targets for upcoming Mars sample return with the intent to identify any signs of ancient or modern life.
Collapse
Affiliation(s)
- Matthew P. Nikitczuk
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Gray E. Bebout
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - Charles A. Geiger
- Universität Salzburg, Fachbereich Chemie und Physik der Materialien, Salzburg, Austria
| | - Tsutomu Ota
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - Takuya Kunihiro
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| | - John F. Mustard
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Sæmundur A. Halldórsson
- Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
| | - Eizo Nakamura
- Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Japan
| |
Collapse
|
2
|
Mandt KE, Mousis O, Luspay-Kuti A. Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape. PLANETARY AND SPACE SCIENCE 2016; 130:104-109. [PMID: 31068733 PMCID: PMC6501213 DOI: 10.1016/j.pss.2016.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen. After evaluating the potential impact of escape and photochemistry on Pluto's nitrogen isotope ratio (14N/15N), we find that if Pluto's nitrogen originated as N2 the current ratio in Pluto's atmosphere would be greater than 324 while it would be less than 157 if the source of Pluto's nitrogen were NH3. The New Horizons spacecraft successfully visited the Pluto system in July 2015 providing a potential opportunity to measure 14N/15N in N2.
Collapse
Affiliation(s)
- Kathleen E. Mandt
- Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228, USA
- Depertment of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France
| | - Adrienn Luspay-Kuti
- Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228, USA
| |
Collapse
|
3
|
Mandt K, Mousis O, Chassefière E. Comparative planetology of the history of nitrogen isotopes in the atmospheres of Titan and Mars. ICARUS 2015; 254:259-261. [PMID: 31118538 PMCID: PMC6527424 DOI: 10.1016/j.icarus.2015.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present here a comparative planetology study of evolution of 14N/15N at Mars and Titan. Studies show that 14N/15N can evolve a great deal as a result of escape in the atmosphere of Mars, but not in Titan's atmosphere. We explain this through the existence of an upper limit to the amount of fractionation allowed to occur due to escape that is a function of the escape flux and the column density of nitrogen.
Collapse
Affiliation(s)
- Kathleen Mandt
- Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228, United States
| | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, 13388 Marseille, France
| | - Eric Chassefière
- Univ Paris-Sud, Laboratoire GEOPS, UMR 8148, Université Paris-Sud, CNRS, Orsay F-91405, France
| |
Collapse
|
4
|
Randazzo JB, Croteau P, Kostko O, Ahmed M, Boering KA. Isotope effects and spectroscopic assignments in the non-dissociative photoionization spectrum of N2. J Chem Phys 2014; 140:194303. [DOI: 10.1063/1.4873717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
5
|
Wong MH, Atreya SK, Mahaffy PN, Franz HB, Malespin C, Trainer MG, Stern JC, Conrad PG, Manning HLK, Pepin RO, Becker RH, McKay CP, Owen TC, Navarro-González R, Jones JH, Jakosky BM, Steele A. Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer. GEOPHYSICAL RESEARCH LETTERS 2013; 40:6033-6037. [PMID: 26074632 PMCID: PMC4459194 DOI: 10.1002/2013gl057840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/18/2013] [Accepted: 11/09/2013] [Indexed: 05/23/2023]
Abstract
[1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL.
Collapse
Affiliation(s)
- Michael H Wong
- Department of Atmospheric, Oceanic, and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
- Astronomy Department, University of CaliforniaBerkeley, California, USA
| | - Sushil K Atreya
- Department of Atmospheric, Oceanic, and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - Paul N Mahaffy
- Code 699, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - Heather B Franz
- Code 699, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - Charles Malespin
- Code 699, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | | | - Jennifer C Stern
- Code 699, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - Pamela G Conrad
- Code 699, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | | | - Robert O Pepin
- School of Physics and Astronomy, University of MinnesotaMinneapolis, Minnesota, USA
| | - Richard H Becker
- School of Physics and Astronomy, University of MinnesotaMinneapolis, Minnesota, USA
| | | | - Tobias C Owen
- Institute for Astronomy, University of Hawai‘i at MānoaHonolulu, Hawaii, USA
| | | | | | | | - Andrew Steele
- Geophysical Laboratory, Carnegie Institution of WashingtonWashington, District of Columbia, USA
| |
Collapse
|
6
|
Guberman SL. The vibrational dependence of dissociative recombination: cross sections for N2+. J Chem Phys 2013; 139:124318. [PMID: 24089778 DOI: 10.1063/1.4821595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Theoretical ab initio calculations are reported of the cross sections for dissociative recombination of the lowest four excited vibrational levels of N2(+) at electron energies from 0.001 to 1.0 eV. Rydberg vibrational levels contributing to the cross section structures are identified as are dissociative channels contributing more than 10(-16) cm(2) to the total cross sections. In contrast to the prior study of v = 0 (S. L. Guberman, J. Chem. Phys. 137, 074309 (2012)), which showed 2(3)Πu to be the dominant dissociative channel, 4(3)Πu is dominant for v = 1. Both 2 and 4(3)Πu are major routes for dissociative recombination from v = 2-4. Other routes including 2(3)Σu(+), 3(3)Πu, 2(1)Πu, 2(3)Πg, 2(1)Σg(+), 1(1)Δg, and b('1)Σu(+) are significant in narrow energy ranges. The results show that minor dissociative routes, included here for N2(+), must be included in theoretical studies of other molecular ions (including the simplest ions H2(+) and H3(+)) if cross section agreement is to be found with future high resolution dissociative recombination experiments. The calculated predissociation lifetimes of the Rydberg resonances are used in a detailed comparison to two prior storage ring experiments in order to determine if the prior assumption of isotropic atomic angular distributions at "zero" electron energy is justified. The prior experimental assumption of comparable cross sections for v = 0-3 is shown to be the case at "zero" but not at nonzero electron energies. Circumstances are identified in which indirect recombination may be visualized as a firefly effect.
Collapse
Affiliation(s)
- Steven L Guberman
- Institute for Scientific Research, 22 Bonad Road, Winchester, Massachusetts 01890, USA
| |
Collapse
|
7
|
Airglow and Aurora in the Atmospheres of Venus and Mars. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/gm066p0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Fegley B. Properties and Composition of the Terrestrial Oceans and of the Atmospheres of the Earth and Other Planets. AGU REFERENCE SHELF 2013. [DOI: 10.1029/rf001p0320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
|
10
|
|
11
|
Chaufray JY, Modolo R, Leblanc F, Chanteur G, Johnson RE, Luhmann JG. Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007je002915] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Sauke TB, Becker JF. Stable isotope laser spectrometer for exploration of Mars. PLANETARY AND SPACE SCIENCE 1998; 46:805-812. [PMID: 11541820 DOI: 10.1016/s0032-0633(98)00014-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
On Earth, measurements of the ratios of stable carbon isotopes have provided much information about geological and biological processes. For example, fractionation of carbon occurs in biotic processes and the retention of a distinctive 2-4% contrast in 13C/12C between organic carbon and carbonates in rocks as old as 3.8 billion years constitutes some of the firmest evidence for the antiquity of life on the Earth. We have developed a prototype tunable diode Laser spectrometer which demonstrates the feasibility of making accurate in situ isotopic ratio measurements on Mars. This miniaturized instrument, with an optical path length of 10 cm, should be capable of making accurate 13C/12C and 15N/14N measurements. Gas samples for measurement are to be produced by pyrolysis using soil samples as small as 50 mg. Measurements of 13C/12C, 18O/16O and 15N/14N have been made to a precision of better than 0.1% and various other isotopes are feasible. This laser technique, which relies on the extremely narrow emission linewidth of tunable diode lasers (<0.001 cm(-1)) has favorable features in comparison to mass spectrometry, the standard method of accurate isotopic ratio measurement. The miniature instrument could be ready to deploy on the 2003 or other Mars lander missions.
Collapse
Affiliation(s)
- T B Sauke
- SETI Institute, NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
| | | |
Collapse
|
13
|
Peterson JR, Le Padellec A, Danared H, Dunn GH, Larsson M, Larson A, Peverall R, Strömholm C, Rosén S, af Ugglas M, van der Zande WJ. Dissociative recombination and excitation of N2+: Cross sections and product branching ratios. J Chem Phys 1998. [DOI: 10.1063/1.475577] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Fox JL, Hać A. The15N/14N isotope fractionation in dissociative recombination of N2+. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97je00086] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Ajello JM, Ciocca M. Fast nitrogen atoms from dissociative excitation of N2by electron impact. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96je01827] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Hutchins KS, Jakosky BM. Evolution of Martian atmospheric argon: Implications for sources of volatiles. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96je00860] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
|
18
|
Lal D. Cosmogenic and nucleogenic isotopic changes in Mars: their rates and implications to the evolutionary history of Martian surface. GEOCHIMICA ET COSMOCHIMICA ACTA 1993; 57:4627-4637. [PMID: 11539580 DOI: 10.1016/0016-7037(93)90188-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present calculations of rates of production of several nuclides in the Martian atmosphere and in the regolith due to nuclear interactions of cosmic ray and radiogenic particles and consider their implications to the evolutionary history of Mars. Nuclides selected are those which, considering their chemical properties, may be useful as tracers for delineating the past histories of the Martian atmosphere and regolith. Calculations are presented for different assumed atmospheric pressures. The regolith production rates for the present thin Martian atmosphere (approximately 20 g cm-2) are expected to be fairly robust because they are based primarily on observed cosmogenic effects in the Moon, for which semiempirical estimates of nuclide production rates have been provided earlier by Reedy (1981). Uncertainties which arise in the calculations of nuclide production rates for an earlier hypothetical Martian atmosphere of approximately 300-500 g cm-2 thickness are discussed. Compared to cosmic ray production rates, the nucleogenic production rates are smaller by several orders of magnitude. However, the nucleogenic production extends to much deeper levels, whereas the cosmogenic production is essentially confined to the top 750-1000 g cm-2 depth. Important examples of nucleogenic production are discussed. Isotopes of neon and argon appear to be very promising for delineating relative magnitudes of a number of planetary processes related to the temporal changes in the thickness of the atmosphere, as well as their release from the regolith. However, quantification of the processes would require higher-precision isotopic data for the atmosphere and also direct measurements of isotopic ratios in the Martian regolith, along with supplementary information on changes in the isotopic compositions of hydrogen, carbon, and nitrogen, which are affected by a variety of mechanisms of escape of gases from the atmosphere. Cosmogenic effects are minimal in these cases. We show that although we can at present draw but limited inferences, the planet Mars presents a unique opportunity to use cosmogenic nuclides as tools to delineate the evolutionary history of the planet as a whole, as well as its regolith and the atmosphere. This arises because of two factors: minimal degassing of the planet, and a fairly intense chemical weathering history of the upper surface. Consequently, an appreciable fraction of some of the isotopes of volatile elements is contributed by nuclear reactions.
Collapse
Affiliation(s)
- D Lal
- Scripps Institution of Oceanography, Geological Research Division, La Jolla, CA 92093-0220, USA
| |
Collapse
|
19
|
|
20
|
Zhang MHG, Luhmann JG, Bougher SW, Nagy AF. The ancient oxygen exosphere of Mars: Implications for atmosphere evolution. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/93je00231] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Fox JL. Dissociative Recombination in Planetary Ionospheres. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/978-1-4615-2976-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
22
|
Zahnle KJ. Xenological constraints on the impact erosion of the early Martian atmosphere. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/92je02941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Abstract
Mars is believed to be lifeless, but it may be possible to transform it into a planet suitable for habitation by plants, and conceivably humans. The success of such an enterprise would depend on the abundance, distribution and form of materials on the planet that could provide carbon dioxide, water and nitrogen.
Collapse
Affiliation(s)
- C P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | | | | |
Collapse
|
24
|
Canosa A, Gomet JC, Rowe BR, Queffelec JL. Flowing Afterglow Langmuir Probe measurement of the N+2(v=0) dissociative recombination rate coefficient. J Chem Phys 1991. [DOI: 10.1063/1.460199] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Rothschild LJ. Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. ICARUS 1990; 88:246-60. [PMID: 11538366 DOI: 10.1016/0019-1035(90)90188-f] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The prospect of life on Mars today is daunting. Especially problematic for a potential life form is a lack of water, particularly in a liquid state; extremely cold temperatures; ultraviolet and ionizing radiation; and soil oxidants. Yet, "oases" where life might persist have been suggested to occur in rocks (in analogy with endolithic microorganisms described from deserts around the world), in polar ice caps (in analogy with snow and ice algae) and in possible volcanic regions (in analogy with chemoautotrophs living in deep sea hydrothermal vents); all are critically examined. Microorganisms are known to be able to survive in salt crystals, and recently it has been shown that organisms can metabolize while encrusted in evaporites. Because evaporites are thought to occur on Mars and can attenuate light in the UV range while being far more transparent to radiation useful for photosynthesis (400-700 nm), and because of the properties of these "endoevaporitic" organisms, I propose that such communities provide a new model system for studying potential life on Mars. On the basis of this model, I suggest possibilities for site selection for future exobiological experiments on Mars.
Collapse
Affiliation(s)
- L J Rothschild
- Solar System Exploration Branch, NASA-Ames Research Center, Moffett Field, California 94035, USA
| |
Collapse
|
26
|
Wright IP, Grady MM, Pillinger CT. The evolution of atmospheric CO2on Mars: The perspective from carbon isotope measurements. ACTA ACUST UNITED AC 1990. [DOI: 10.1029/jb095ib09p14789] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Klingler JM, Mancinelli RL, White MR. Biological nitrogen fixation under primordial Martian partial pressures of dinitrogen. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1989; 9:173-176. [PMID: 11537369 DOI: 10.1016/0273-1177(89)90225-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Early Earth and early Mars were similar enough such that past geochemical and climatic conditions on Mars may have also been favorable for the origin of life. However, one of the most striking differences between the two planets was the low partial pressure of dinitrogen (pN2) on early Mars (18 mb). On Earth, nitrogen is a key biological element and in many ecosystems the low availability of fixed nitrogen compounds is the main factor limiting growth. Biological fixation of dinitrogen on Earth is a crucial source of fixed nitrogen. Could the low availability of dinitrogen in the primordial Martian atmosphere have prevented the existence, or evolution of Martian microbiota? Azotobacter vinelandii and Azomonas agilis were grown in nitrogen free synthetic medium under various partial pressures of dinitrogen ranging from 780-0 mb (total atmosphere=1 bar). Below 400 mb the biomass, cell number, and growth rate decreased with decreasing pN2. Both microorganisms were capable of growth at a pN2 as low as 5 mb, but no growth was observed at a pN2 < or = 1 mb. The data appear to indicate that biological nitrogen fixation could have occurred on primordial Mars (pN2=18 mb) making it possible for a biotic system to have played a role in the Martian nitrogen cycle. It is possible that nitrogen may have played a key role in the early evolution of life on Mars, and that later a lack of available nitrogen on that planet (currently, pN2=0.2 mb) may have been involved in its subsequent extinction.
Collapse
Affiliation(s)
- J M Klingler
- NASA-Ames Research Center, Solar System Exploration, Moffett Field, CA 94035, USA
| | | | | |
Collapse
|
28
|
|
29
|
McKay CP. Exobiology and future Mars missions: the search for Mars' earliest biosphere. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1986; 6:269-285. [PMID: 11537831 DOI: 10.1016/0273-1177(86)90096-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The primordial Mars may have possessed a thick carbon dioxide atmosphere, with liquid water common on the surface, similar in many ways to the primordial Earth. During this epoch, billions of years ago, the surface of Mars could have been conducive to the origin of life. It is possible that life evolved on Mars to be later eliminated as the atmospheric pressure dropped. Analysis of the surface of Mars for the traces of this early martian biota could provide many insights into the phenomenon of life and its coupling to planetary evolution.
Collapse
Affiliation(s)
- C P McKay
- Solar System Exploration Branch, NASA/Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
30
|
|