1
|
Zhang H, Zong Q, Connor H, Delamere P, Facskó G, Han D, Hasegawa H, Kallio E, Kis Á, Le G, Lembège B, Lin Y, Liu T, Oksavik K, Omidi N, Otto A, Ren J, Shi Q, Sibeck D, Yao S. Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere. SPACE SCIENCE REVIEWS 2022; 218:40. [PMID: 35784192 PMCID: PMC9239986 DOI: 10.1007/s11214-021-00865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Dayside transients, such as hot flow anomalies, foreshock bubbles, magnetosheath jets, flux transfer events, and surface waves, are frequently observed upstream from the bow shock, in the magnetosheath, and at the magnetopause. They play a significant role in the solar wind-magnetosphere-ionosphere coupling. Foreshock transient phenomena, associated with variations in the solar wind dynamic pressure, deform the magnetopause, and in turn generates field-aligned currents (FACs) connected to the auroral ionosphere. Solar wind dynamic pressure variations and transient phenomena at the dayside magnetopause drive magnetospheric ultra low frequency (ULF) waves, which can play an important role in the dynamics of Earth's radiation belts. These transient phenomena and their geoeffects have been investigated using coordinated in-situ spacecraft observations, spacecraft-borne imagers, ground-based observations, and numerical simulations. Cluster, THEMIS, Geotail, and MMS multi-mission observations allow us to track the motion and time evolution of transient phenomena at different spatial and temporal scales in detail, whereas ground-based experiments can observe the ionospheric projections of transient magnetopause phenomena such as waves on the magnetopause driven by hot flow anomalies or flux transfer events produced by bursty reconnection across their full longitudinal and latitudinal extent. Magnetohydrodynamics (MHD), hybrid, and particle-in-cell (PIC) simulations are powerful tools to simulate the dayside transient phenomena. This paper provides a comprehensive review of the present understanding of dayside transient phenomena at Earth and other planets, their geoeffects, and outstanding questions.
Collapse
Affiliation(s)
- Hui Zhang
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- Shandong University, Weihai, China
| | - Qiugang Zong
- Institute of Space Physics and Applied Technology, Peking University, Beijing, 100871 China
- Polar Research Institute of China, Shanghai, 200136 China
| | - Hyunju Connor
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Peter Delamere
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
| | - Gábor Facskó
- Department of Informatics, Milton Friedman University, 1039 Budapest, Hungary
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, 1121 Budapest, Hungary
| | | | - Hiroshi Hasegawa
- Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
| | | | - Árpád Kis
- Institute of Earth Physics and Space Science (ELKH EPSS), Sopron, Hungary
| | - Guan Le
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Bertrand Lembège
- LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales), IPSL/CNRS/UVSQ, 11 Bd d’Alembert, Guyancourt, 78280 France
| | - Yu Lin
- Auburn University, Auburn, USA
| | - Terry Liu
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Kjellmar Oksavik
- Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
- Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
| | | | - Antonius Otto
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
| | - Jie Ren
- Institute of Space Physics and Applied Technology, Peking University, Beijing, 100871 China
| | | | - David Sibeck
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | | |
Collapse
|
2
|
Abstract
By means of the formation of vortices in the nonlinear phase, the Kelvin Helmholtz instability is able to redistribute the flux of energy of the solar wind that flows parallel to the magnetopause. The energy transport associated with the Kelvin Helmholtz instability contributes significantly to the magnetosphere and magnetosheath dynamics, in particular at the flanks of the magnetopause where the presence of a magnetic field perpendicular to the velocity flow does not inhibit the instability development. By means of a 2D two-fluid simulation code, the behavior of the Kelvin Helmholtz instability is investigated in the presence of typical conditions observed at the magnetopause. In particular, the energy penetration in the magnetosphere is studied as a function of an important parameter such as the solar wind velocity. The influence of the density jump at the magnetopause is also discussed.
Collapse
|
3
|
Sorathia KA, Merkin VG, Ukhorskiy AY, Allen RC, Nykyri K, Wing S. Solar Wind Ion Entry Into the Magnetosphere During Northward IMF. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2019; 124:5461-5481. [PMID: 31598452 PMCID: PMC6774285 DOI: 10.1029/2019ja026728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 05/22/2023]
Abstract
Extended periods of northward interplanetary magnetic field (IMF) lead to the formation of a cold, dense plasma sheet due to the entry of solar wind plasma into the magnetosphere. Identifying the paths that the solar wind takes to enter the magnetosphere, and their relative importance has remained elusive. Any theoretical model of entry must satisfy observational constraints, such as the overall entry rate and the dawn-dusk asymmetry observed in the cold, dense plasma sheet. We model, using a combination of global magnetohydrodynamic and test particle simulations, solar wind ion entry into the magnetosphere during northward IMF and compare entry facilitated by the Kelvin-Helmholtz instability to cusp reconnection. For Kelvin-Helmholtz entry we reproduce transport rates inferred from observation and kinetic modeling and find that intravortex reconnection creates buoyant flux tubes, which provides, through interchange instability, a mechanism of filling the central plasma sheet with cold magnetosheath plasma. For cusp entry we show that an intrinsic dawn-dusk asymmetry is created during entry that is the result of alignment of the westward ion drift with the dawnward electric field typically observed during northward IMF. We show that both entry mechanisms provide comparable mass but affect entering plasma differently. The flank-entering plasma is cold and dawn-dusk symmetric, whereas the cusp-entering plasma is accelerated and preferentially deflected toward dawn. The combined effect of these entry mechanisms results in a plasma sheet population that exhibits dawn-dusk asymmetry in the manner that is seen in nature: a two-component (hot and cold) dusk flank and hotter, broadly peaked dawn population.
Collapse
Affiliation(s)
- K. A. Sorathia
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - V. G. Merkin
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - A. Y. Ukhorskiy
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - R. C. Allen
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - K. Nykyri
- Center for Space and Atmospheric ResearchEmbry‐Riddle Aeronautical UniversityDaytona BeachFLUSA
| | - S. Wing
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| |
Collapse
|
4
|
Karimi M, Girimaji SS. Suppression mechanism of Kelvin-Helmholtz instability in compressible fluid flows. Phys Rev E 2016; 93:041102. [PMID: 27176246 DOI: 10.1103/physreve.93.041102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 11/07/2022]
Abstract
The transformative influence of compressibility on the Kelvin-Helmholtz instability (KHI) at the interface between two fluid streams of different velocities is explicated. When the velocity difference is small (subsonic), shear effects dominate the interface flow dynamics causing monotonic roll-up of vorticity and mixing between the two streams leading to the KHI. We find that at supersonic speed differentials, compressibility forces the dominance of dilatational (acoustic) rather than shear dynamics at the interface. Within this dilatational interface layer, traveling pressure waves cause the velocity perturbations to become oscillatory. We demonstrate that the oscillatory fluid motion reverses vortex roll-up and segregates the two streams leading to KHI suppression. Analysis and illustrations of the compressibility-induced suppression mechanism are presented.
Collapse
Affiliation(s)
- Mona Karimi
- Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA.,Aerospace Engineering Department, Texas A&M University, College Station, Texas 77843, USA
| | - Sharath S Girimaji
- Aerospace Engineering Department, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
5
|
Kavosi S, Raeder J. Ubiquity of Kelvin-Helmholtz waves at Earth's magnetopause. Nat Commun 2015; 6:7019. [PMID: 25960122 PMCID: PMC4432594 DOI: 10.1038/ncomms8019] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/24/2015] [Indexed: 11/09/2022] Open
Abstract
Magnetic reconnection is believed to be the dominant process by which solar wind plasma enters the magnetosphere. However, for periods of northward interplanetary magnetic field (IMF) reconnection is less likely at the dayside magnetopause, and Kelvin-Helmholtz waves (KHWs) may be important agents for plasma entry and for the excitation of ultra-low-frequency (ULF) waves. The relative importance of KHWs is controversial because no statistical data on their occurrence frequency exist. Here we survey 7 years of in situ data from the NASA THEMIS (Time History of Events and Macro scale Interactions during Substorms) mission and find that KHWs occur at the magnetopause ∼19% of the time. The rate increases with solar wind speed, Alfven Mach number and number density, but is mostly independent of IMF magnitude. KHWs may thus be more important for plasma transport across the magnetopause than previously thought, and frequently drive magnetospheric ULF waves.
Collapse
Affiliation(s)
- Shiva Kavosi
- Department of Physics and Space Science Center, University of New Hampshire, 8 College Road, Durham, New Hampshire 03824, USA
| | - Joachim Raeder
- Department of Physics and Space Science Center, University of New Hampshire, 8 College Road, Durham, New Hampshire 03824, USA
| |
Collapse
|
6
|
Saturation level of Alfvén waves driven by Kelvin–Helmholtz instability. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nat Commun 2013; 4:1466. [PMID: 23403567 DOI: 10.1038/ncomms2476] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/11/2013] [Indexed: 11/08/2022] Open
Abstract
An understanding of the transport of solar wind plasma into and throughout the terrestrial magnetosphere is crucial to space science and space weather. For non-active periods, there is little agreement on where and how plasma entry into the magnetosphere might occur. Moreover, behaviour in the high-latitude region behind the magnetospheric cusps, for example, the lobes, is poorly understood, partly because of lack of coverage by previous space missions. Here, using Cluster multi-spacecraft data, we report an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetosphere tailward of the cusps. From statistical observational facts and simulation analysis we suggest that these regions are most likely produced by magnetic reconnection at the high-latitude magnetopause, although other processes, such as impulsive penetration, may not be ruled out entirely. We find that the degree of entry can be significant for solar wind transport into the magnetosphere during such quiet times.
Collapse
|
8
|
Fujimoto M, Terasawa T. Ion inertia effect on the Kelvin-Helmholtz instability. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/91ja01312] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Wei CQ, Lee LC. Coupling of magnetopause-boundary layer to the polar ionosphere. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/92ja02232] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Lai SH, Ip WH. Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046413. [PMID: 22181289 DOI: 10.1103/physreve.84.046413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/25/2011] [Indexed: 05/31/2023]
Abstract
Kelvin-Helmholtz instability (KHI) driven by velocity shear is a generator of waves found away from the vicinity of the velocity-shear layers since the fast-mode waves radiated from the surface perturbation can propagate away from the transition layer. Thus the nonlinear evolution associated with KHI is not confined near the velocity-shear layer. To understand the physical processes in multiple velocity-shear layers, the interactions between two KHIs at a pair of tangential discontinuities are studied by two-dimensional magnetohydrodynamic simulations. It is shown that the interactions between two neighboring velocity-shear layers are dominated by the propagation of the fast-mode waves radiated from KHIs in a nonuniform medium. That is, the fast-mode Mach number of the surface waves M(Fy), a key factor of the nonlinear evolution of KHI, will vary with the nonuniform background plasma velocity due to the existence of two neighboring velocity-shear layers. As long as the M(Fy) observed in the plasma rest frame across the neighboring velocity-shear layer is larger than one, newly formed fast-mode Mach-cone-like (MCL) plane waves generated by the fast-mode waves can be found in this region. As results of the interactions of two KHIs, reflection and distortion of the MCL plane waves generate the turbulence and increase the plasma temperature, which provide possible mechanisms of heating and accelerating local plasma between two neighboring velocity-shear layers.
Collapse
Affiliation(s)
- S H Lai
- Institute of Astronomy, National Central University, Jhongli, Taiwan, Republic of China
| | | |
Collapse
|
11
|
Nakamura TKM, Hasegawa H, Shinohara I. Kinetic effects on the Kelvin-Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: Particle simulations. PHYSICS OF PLASMAS 2010; 17:042119. [PMID: 20838425 PMCID: PMC2931600 DOI: 10.1063/1.3385445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/18/2010] [Indexed: 05/29/2023]
Abstract
Ion-to-magnetohydrodynamic scale physics of the transverse velocity shear layer and associated Kelvin-Helmholtz instability (KHI) in a homogeneous, collisionless plasma are investigated by means of full particle simulations. The shear layer is broadened to reach a kinetic equilibrium when its initial thickness is close to the gyrodiameter of ions crossing the layer, namely, of ion-kinetic scale. The broadened thickness is larger in B⋅Ω<0 case than in B⋅Ω>0 case, where Ω is the vorticity at the layer. This is because the convective electric field, which points out of (into) the layer for B⋅Ω<0 (B⋅Ω>0), extends (reduces) the gyrodiameters. Since the kinetic equilibrium is established before the KHI onset, the KHI growth rate depends on the broadened thickness. In the saturation phase of the KHI, the ion vortex flow is strengthened (weakened) for B⋅Ω<0 (B⋅Ω>0), due to ion centrifugal drift along the rotational plasma flow. In ion inertial scale vortices, this drift effect is crucial in altering the ion vortex size. These results indicate that the KHI at Mercury-like ion-scale magnetospheric boundaries could show clear dawn-dusk asymmetries in both its linear and nonlinear growth.
Collapse
Affiliation(s)
- T K M Nakamura
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa 229-8510, Japan
| | | | | |
Collapse
|
12
|
Hasegawa H, Fujimoto M, Phan TD, Rème H, Balogh A, Dunlop MW, Hashimoto C, Tandokoro R. Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 2004; 430:755-8. [PMID: 15306802 DOI: 10.1038/nature02799] [Citation(s) in RCA: 492] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 06/29/2004] [Indexed: 11/10/2022]
Abstract
Establishing the mechanisms by which the solar wind enters Earth's magnetosphere is one of the biggest goals of magnetospheric physics, as it forms the basis of space weather phenomena such as magnetic storms and aurorae. It is generally believed that magnetic reconnection is the dominant process, especially during southward solar-wind magnetic field conditions when the solar-wind and geomagnetic fields are antiparallel at the low-latitude magnetopause. But the plasma content in the outer magnetosphere increases during northward solar-wind magnetic field conditions, contrary to expectation if reconnection is dominant. Here we show that during northward solar-wind magnetic field conditions-in the absence of active reconnection at low latitudes-there is a solar-wind transport mechanism associated with the nonlinear phase of the Kelvin-Helmholtz instability. This can supply plasma sources for various space weather phenomena.
Collapse
Affiliation(s)
- H Hasegawa
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755-8000, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vortex-like fluctuations in the magnetotail flanks and their possible roles in plasma transport. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/133gm24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Otto A, Fairfield DH. Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999ja000312] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Miura A. Self-organization in the two-dimensional magnetohydrodynamic transverse Kelvin-Helmholtz instability. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/98ja02530] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
|
17
|
Ruohoniemi JM, Greenwald RA. Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96ja01584] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Lu G, Richmond AD, Emery BA, Reiff PH, de la Beaujardière O, Rich FJ, Denig WF, Kroehl HW, Lyons LR, Ruohoniemi JM, Friis-Christensen E, Opgenoorth H, Persson MAL, Lepping RP, Rodger AS, Hughes T, McEwin A, Dennis S, Morris R, Burns G, Tomlinson L. Interhemispheric asymmetry of the high-latitude ionospheric convection pattern. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/93ja03441] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Fujimoto M, Terasawa T. Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/93ja02722] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0021-9169(93)90090-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Thomas VA, Winske D. Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/93ja00604] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
|
23
|
Terasawa T, Fujimoto M, Karimabadi H, Omidi N. Anomalous ion mixing within a Kelvin-Helmholtz vortex in a collisionless plasma. PHYSICAL REVIEW LETTERS 1992; 68:2778-2781. [PMID: 10045490 DOI: 10.1103/physrevlett.68.2778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
24
|
Miura A. Kelvin-Helmholtz instability at the magnetospheric boundary: Dependence on the magnetosheath sonic Mach number. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92ja00791] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
|
26
|
Siscoe GL, Lotko W, Sonnerup BUÖ. A high-latitude, low-latitude boundary layer model of the convection current system. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/90ja02362] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Lotko W, Shen MM. On large-scale rotational motions and energetics of auroral shear layers. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja00446] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Pu ZY, Yei M, Liu ZX. Generation of vortex-induced tearing mode instability at the magnetopause. ACTA ACUST UNITED AC 1990. [DOI: 10.1029/ja095ia07p10559] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Tsurutani BT, Brinca AL, Smith EJ, Okida RT, Anderson RR, Eastman TE. A statistical study of ELF-VLF plasma waves at the magnetopause. ACTA ACUST UNITED AC 1989. [DOI: 10.1029/ja094ia02p01270] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Rostoker G, Savoie D, Phan TD. Response of magnetosphere-ionosphere current systems to changes in the interplanetary magnetic field. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/ja093ia08p08633] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Kan JR. A theory of patchy and intermittent reconnections for magnetospheric flux transfer events. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/ja093ia06p05613] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
|
33
|
Mitchell DG, Kutchko F, Williams DJ, Eastman TE, Frank LA, Russell CT. An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere. ACTA ACUST UNITED AC 1987. [DOI: 10.1029/ja092ia07p07394] [Citation(s) in RCA: 241] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Miura A. Simulation of Kelvin-Helmholtz instability at the magnetospheric boundary. ACTA ACUST UNITED AC 1987. [DOI: 10.1029/ja092ia04p03195] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Lotko W, Sonnerup BUÖ, Lysak RL. Nonsteady boundary layer flow including ionospheric drag and parallel electric fields. ACTA ACUST UNITED AC 1987. [DOI: 10.1029/ja092ia08p08635] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Coupling between the Solar Wind and the Earth’s Magnetosphere: Summary Comments. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/978-94-009-4722-1_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Reiff PH, Luhmann JG. Solar Wind Control of the Polar-Cap Voltage. SOLAR WIND — MAGNETOSPHERE COUPLING 1986. [DOI: 10.1007/978-94-009-4722-1_33] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
|
39
|
|
40
|
Paschmann G, Papamastorakis I, Sckopke N, Sonnerup BUÖ, Bame SJ, Russell CT. ISEE observations of the magnetopause: Reconnection and the energy balance. ACTA ACUST UNITED AC 1985. [DOI: 10.1029/ja090ia12p12111] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Baumjohann W, Haerendel G. Magnetospheric convection observed between 0600 and 2100 LT: Solar wind and IMF dependence. ACTA ACUST UNITED AC 1985. [DOI: 10.1029/ja090ia07p06370] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Yumoto K, Saito T, Akasofu SI, Tsurutani BT, Smith EJ. Propagation mechanism of daytime Pc 3–4 pulsations observed at synchronous orbit and multiple ground-based stations. ACTA ACUST UNITED AC 1985. [DOI: 10.1029/ja090ia07p06439] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|