1
|
Varsani A, Nakamura R, Sergeev VA, Baumjohann W, Owen CJ, Petrukovich AA, Yao Z, Nakamura TKM, Kubyshkina MV, Sotirelis T, Burch JL, Genestreti KJ, Vörös Z, Andriopoulou M, Gershman DJ, Avanov LA, Magnes W, Russell CT, Plaschke F, Khotyaintsev YV, Giles BL, Coffey VN, Dorelli JC, Strangeway RJ, Torbert RB, Lindqvist P, Ergun R. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2017; 122:10891-10909. [PMID: 29399431 PMCID: PMC5784414 DOI: 10.1002/2017ja024547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 RE.
Collapse
Affiliation(s)
- A. Varsani
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - R. Nakamura
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - V. A. Sergeev
- Earth's Physics DepartmentSt. Petersburg State UniversitySt. PetersburgRussia
| | - W. Baumjohann
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - C. J. Owen
- Mullard Space Science Laboratory/UCLDorkingUK
| | | | - Z. Yao
- Space Science Technologies and Astrophysics Research InstituteLiegeBelgium
| | | | - M. V. Kubyshkina
- Earth's Physics DepartmentSt. Petersburg State UniversitySt. PetersburgRussia
| | - T. Sotirelis
- Applied Physics LaboratoryThe Johns Hopkins UniversityBaltimoreMAUSA
| | - J. L. Burch
- Southwest Research InstituteSan AntonioTXUSA
| | | | - Z. Vörös
- Space Research InstituteAustrian Academy of SciencesGrazAustria
- Institute of PhysicsUniversity of GrazGrazAustria
| | - M. Andriopoulou
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - D. J. Gershman
- Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltMDUSA
| | - L. A. Avanov
- Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltMDUSA
| | - W. Magnes
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - C. T. Russell
- University of California Los Angeles, IGPP/EPSSLos AngelesCAUSA
| | - F. Plaschke
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | | | - B. L. Giles
- Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltMDUSA
| | - V. N. Coffey
- NASA Marshall Space Flight CenterHuntsvilleALUSA
| | - J. C. Dorelli
- Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltMDUSA
| | | | - R. B. Torbert
- Southwest Research InstituteSan AntonioTXUSA
- University of New HampshireDurhamNHUSA
| | | | - R. Ergun
- Laboratory for Atmospheric and Space PhysicsUniversity of Colorado BoulderBoulderCOUSA
| |
Collapse
|
2
|
Keesee AM, Scime EE. Database of ion temperature maps during geomagnetic storms. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2015; 2:39-46. [PMID: 27981070 PMCID: PMC5125406 DOI: 10.1002/2014ea000061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 06/06/2023]
Abstract
Ion temperatures as a function of the x and y axes in the geocentric solar magnetospheric (GSM) coordinate system and time are available for 76 geomagnetic storms that occurred during the period July 2008 to December 2013 on CDAWeb. The method for mapping energetic neutral atom data from the Two Wide-angle Imaging Spectrometers (TWINS) mission to the GSM equatorial plane and subsequent ion temperature calculation are described here. The ion temperatures are a measure of the average thermal energy of the bulk ion population in the 1-40 keV energy range. These temperatures are useful for studies of ion dynamics, for placing in situ measurements in a global context, and for establishing boundary conditions for models of the inner magnetosphere and the plasma sheet.
Collapse
Affiliation(s)
- Amy M Keesee
- Department of Physics and Astronomy West Virginia University Morgantown West Virginia USA
| | - Earl E Scime
- Department of Physics and Astronomy West Virginia University Morgantown West Virginia USA
| |
Collapse
|
3
|
Plasma Transport in the Earth's Magnetotail. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/gm062p0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
4
|
Elphinstone RD, Hearn D, Murphree JS, Cogger LL. Mapping using the Tsyganenko Long Magnetospheric Model and its relationship to Viking auroral images. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/90ja01625] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Ashour-Abdalla M, Büchner J, Zelenyi LM. The quasi-adiabatic ion distribution in the central plasma sheet and its boundary layer. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/90ja01921] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Baumjohann W, Paschmann G, Cattell CA. Average plasma properties in the central plasma sheet. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja094ia06p06597] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
|
8
|
Kettmann G, Fritz TA, Hones EW, Daly PW. Energetic ion anisotropies in the geomagnetic tail: 1. A statistical survey. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/92ja01656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Chen SH, Kivelson MG. On ultralow frequency waves in the lobes of the Earth's magnetotail. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/91ja01422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Huddleston MM, Chappell CR, Delcourt DC, Moore TE, Giles BL, Chandler MO. An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004ja010401] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Vortex-like fluctuations in the magnetotail flanks and their possible roles in plasma transport. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/133gm24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Lin Y, Swift DW. A two-dimensional hybrid simulation of the magnetotail reconnection layer. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96ja01457] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Lui ATY. Current disruption in the Earth's magnetosphere: Observations and models. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96ja00079] [Citation(s) in RCA: 447] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Baker DN, Pulkkinen TI, Angelopoulos V, Baumjohann W, McPherron RL. Neutral line model of substorms: Past results and present view. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/95ja03753] [Citation(s) in RCA: 754] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Hones EW, Thomsen MF, Reeves GD, Weiss LA, McComas DJ, Newell PT. Observational determination of magnetic connectivity of the geosynchronous region of the magnetosphere to the auroral oval. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/95ja00418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Angelopoulos V, Kennel CF, Coroniti FV, Pellat R, Kivelson MG, Walker RJ, Russell CT, Baumjohann W, Feldman WC, Gosling JT. Statistical characteristics of bursty bulk flow events. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/94ja01263] [Citation(s) in RCA: 561] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Heinemann M, Erickson GM, Pontius DH. Inertial currents in isotropic plasma. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/94ja00204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
An alternative interpretation of auroral precipitation and luminosity observations from the DE, DMSP, AUREOL, and Viking satellites in terms of their mapping to the nightside magnetosphere. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0021-9169(93)90160-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Dusenbery PB, Martin RF, Burkhart GR. Particle chaos in the Earth's magnetotail. CHAOS (WOODBURY, N.Y.) 1992; 2:427-446. [PMID: 12779993 DOI: 10.1063/1.165886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nonlinear particle dynamics is studied both in current sheets and near neutral lines. The parameter governing particle chaos in a current sheet with a constant normal component, B(n), is kappa=(R(min)/rho(max))(1/2), where R(min) is the minimum field line radius of curvature and rho(max) is the maximum gyroradius. In such a current sheet, motion can be viewed as a combination of a component normal to the current sheet and a tangential component. The parameter kappa represents the ratio of the characteristic time scale of the normal component to the tangential, and thus, particle chaos is maximized for kappa approximately 1. For kappa<<1, the slow motion preserves the action integral of the fast motion, J(z), except near the separatrix, the phase space boundary separating motion that crosses the current sheet midplane from that which does not. Near a linear neutral line, it is found that the parameter b(n), which is the ratio of the characteristic vertical and horizontal field strengths, rather than kappa governs particle chaos. In the limit b(n)<<1, the slow motion again preserves J(z), and J(z) has the same analytic form as in a constant B(n) current sheet. In the limit of b(n)<<1, the structure of x-p(x) phase space is controlled by the stable and unstable manifolds associated with the unstable fixed point orbit at (x,p(x))=(0,0), and this structure lies along a contour of constant J(z).
Collapse
Affiliation(s)
- Paul B. Dusenbery
- Astrophysical, Planetary and Atmospheric Sciences Department, University of Colorado, Boulder, Colorado 80309-0391Physics Department, Illinois State University, Normal, Illinois 61761Astrophysical, Planetary and Atmospheric Sciences Department, University of Colorado, Boulder, Colorado 80309-0391
| | | | | |
Collapse
|
20
|
Nakamura M, Paschmann G, Baumjohann W, Sckopke N. Ion distributions and flows in and near the plasma sheet boundary layer. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/91ja02361] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Lennartsson W. A scenario for solar wind penetration of Earth’s magnetic tail based on ion composition data from the ISEE 1 spacecraft. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/92ja01604] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Angelopoulos V, Baumjohann W, Kennel CF, Coroniti FV, Kivelson MG, Pellat R, Walker RJ, Lühr H, Paschmann G. Bursty bulk flows in the inner central plasma sheet. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/91ja02701] [Citation(s) in RCA: 847] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Samson JC, Wallis DD, Hughes TJ, Creutzberg F, Ruohoniemi JM, Greenwald RA. Substorm intensifications and field line resonances in the nightside magnetosphere. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/91ja03156] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Stasiewicz K. A global model of gyroviscous field line merging at the magnetopause. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/90ja02194] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Onsager TG, Thomsen MF, Elphic RC, Gosling JT. Model of electron and ion distributions in the plasma sheet boundary layer. ACTA ACUST UNITED AC 1991. [DOI: 10.1029/91ja01983] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Rich FJ, Hardy DA, Redus RH, Gussenhoven MS. Northward IMF and patterns of high-latitude precipitation and field-aligned currents: The February 1986 Storm. ACTA ACUST UNITED AC 1990. [DOI: 10.1029/ja095ia06p07893] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Baumjohann W, Paschmann G, Lühr H. Characteristics of high-speed ion flows in the plasma sheet. ACTA ACUST UNITED AC 1990. [DOI: 10.1029/ja095ia04p03801] [Citation(s) in RCA: 565] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Zelenyi LM, Kovrazkhin RA, Bosqued JM. Velocity-dispersed ion beams in the nightside auroral zone: AUREOL 3 observations. ACTA ACUST UNITED AC 1990. [DOI: 10.1029/ja095ia08p12119] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Dusenbery PB, Lyons LR. Ion diffusion coefficients from resonant interactions with broadband turbulence in the magnetotail. ACTA ACUST UNITED AC 1989. [DOI: 10.1029/ja094ia03p02484] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Nishida A, Bame SJ, Baker DN, Gloeckler G, Scholer M, Smith EJ, Terasawa T, Tsurutani B. Assessment of the boundary layer model of the magnetospheric substorm. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/ja093ia06p05579] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Baumjohann W, Paschmann G, Sckopke N, Cattell CA, Carlson CW. Average ion moments in the plasma sheet boundary layer. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/ja093ia10p11507] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Takahashi K, Hones EW. ISEE 1 and 2 observations of ion distributions at the plasma sheet-tail lobe boundary. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/ja093ia08p08558] [Citation(s) in RCA: 174] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Winglee RM, Pritchett PL, Dusenbery PB, Persoon AM, Waite JH, Moore TE, Burch JL, Collin HL, Slavin JA, Sugiura M. Particle acceleration and wave emissions associated with the formation of auroral cavities and enhancements. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/ja093ia12p14567] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Christon SP, Mitchell DG, Williams DJ, Frank LA, Huang CY, Eastman TE. Energy spectra of plasma sheet ions and electrons from ∼50 eV/eto ∼1 MeV during plasma temperature transitions. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/ja093ia04p02562] [Citation(s) in RCA: 353] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
|
36
|
Chappell CR, Moore TE, Waite JH. The ionosphere as a fully adequate source of plasma for the Earth's magnetosphere. ACTA ACUST UNITED AC 1987. [DOI: 10.1029/ja092ia06p05896] [Citation(s) in RCA: 383] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Solar Wind Influence on Magnetotail Configuration and Dynamics. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/978-94-009-4722-1_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Eastman TE, Popielawska B, Frank LA. Three-dimensional plasma observations near the outer magnetospheric boundary. ACTA ACUST UNITED AC 1985. [DOI: 10.1029/ja090ia10p09519] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|