1
|
Cohen IJ, Smith EJ, Clark GB, Turner DL, Ellison DH, Clare B, Regoli LH, Kollmann P, Gallagher DT, Holtzman GA, Likar JJ, Morizono T, Shannon M, Vodusek KS. Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS): A Dedicated Orbiter Mission Concept to Study Space Physics at Uranus. SPACE SCIENCE REVIEWS 2023; 219:65. [PMID: 37869526 PMCID: PMC10587260 DOI: 10.1007/s11214-023-01013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.
Collapse
Affiliation(s)
- Ian J Cohen
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Evan J Smith
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - George B Clark
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Drew L Turner
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Donald H Ellison
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Ben Clare
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Leonardo H Regoli
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Peter Kollmann
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - G Allan Holtzman
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Justin J Likar
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Takeshi Morizono
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Matthew Shannon
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | |
Collapse
|
2
|
Paty C, Arridge CS, Cohen IJ, DiBraccio GA, Ebert RW, Rymer AM. Ice giant magnetospheres. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190480. [PMID: 33161869 DOI: 10.1098/rsta.2019.0480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The ice giant planets provide some of the most interesting natural laboratories for studying the influence of large obliquities, rapid rotation, highly asymmetric magnetic fields and wide-ranging Alfvénic and sonic Mach numbers on magnetospheric processes. The geometries of the solar wind-magnetosphere interaction at the ice giants vary dramatically on diurnal timescales due to the large tilt of the magnetic axis relative to each planet's rotational axis and the apparent off-centred nature of the magnetic field. There is also a seasonal effect on this interaction geometry due to the large obliquity of each planet (especially Uranus). With in situ observations at Uranus and Neptune limited to a single encounter by the Voyager 2 spacecraft, a growing number of analytical and numerical models have been put forward to characterize these unique magnetospheres and test hypotheses related to the magnetic structures and the distribution of plasma observed. Yet many questions regarding magnetospheric structure and dynamics, magnetospheric coupling to the ionosphere and atmosphere, and potential interactions with orbiting satellites remain unanswered. Continuing to study and explore ice giant magnetospheres is important for comparative planetology as they represent critical benchmarks on a broad spectrum of planetary magnetospheric interactions, and provide insight beyond the scope of our own Solar System with implications for exoplanet magnetospheres and magnetic reversals. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- Carol Paty
- Department of Earth Sciences, University of Oregon, 100 Cascade Hall, Eugene, OR 97403-1272, USA
| | - Chris S Arridge
- Department of Physics, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| | - Ian J Cohen
- The Johns Hopkins University Applied Physics Laboratory, 11000 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Gina A DiBraccio
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Robert W Ebert
- Department of Space Research, Southwest Research Institute, San Antonio, TX 78228-0510, USA
- Department of Physics and Astronomy, University of Texas, San Antonio, TX 78249-0600, USA
| | - Abigail M Rymer
- The Johns Hopkins University Applied Physics Laboratory, 11000 Johns Hopkins Road, Laurel, MD 20723, USA
| |
Collapse
|
3
|
Herbert F. The Uranian corona as a charge exchange cascade of plasma sheet protons. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/92ja02735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Mauk BH, Krimigis SM, Keath EP, Cheng AF, Armstrong TP, Lanzerotti LJ, Gloeckler G, Hamilton DC. The hot plasma and radiation environment of the Uranian magnetosphere. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p15283] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Cheng AF, Krimigis SM, Mauk BH, Keath EP, Maclennan CG, Lanzerotti LJ, Paonessa MT, Armstrong TP. Energetic ion and electron phase space densities in the magnetosphere of Uranus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p15315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Selesnick RS, McNutt RL. Voyager 2 plasma ion observations in the magnetosphere of Uranus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/ja092ia13p15249] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|