1
|
Cohen IJ, Smith EJ, Clark GB, Turner DL, Ellison DH, Clare B, Regoli LH, Kollmann P, Gallagher DT, Holtzman GA, Likar JJ, Morizono T, Shannon M, Vodusek KS. Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS): A Dedicated Orbiter Mission Concept to Study Space Physics at Uranus. SPACE SCIENCE REVIEWS 2023; 219:65. [PMID: 37869526 PMCID: PMC10587260 DOI: 10.1007/s11214-023-01013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.
Collapse
Affiliation(s)
- Ian J Cohen
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Evan J Smith
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - George B Clark
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Drew L Turner
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Donald H Ellison
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Ben Clare
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Leonardo H Regoli
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Peter Kollmann
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - G Allan Holtzman
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Justin J Likar
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Takeshi Morizono
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Matthew Shannon
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | |
Collapse
|
2
|
Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the
Voyager
Spacecraft from 1 to 45 au. III. Observation Times. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4365/aac83a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the Voyager Spacecraft from 1 to 45 au. I. Wave Properties. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4357/aac83b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Wong HK, Smith CW. Electron beam excitation of upstream waves in the whistler mode frequency range. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/94ja00821] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|