1
|
Chen X, Yang F, Bai T, Wu Y, Zheng S, Tong P, Chen H, Li X. 2'-FL in Dairy Matrices Attenuates Allergic Symptoms in Mice by Reducing BLG Hypersensitivity and Modulating Gut Microecology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40231542 DOI: 10.1021/acs.jafc.4c11606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
2'-Fucosyllactose (2'-FL), an industrial breast milk oligosaccharide, is approved for use in infant formula and may reduce cow's milk protein allergenicity. To investigate whether glycosylation products of 2'-FL in dairy products (2'-FL-β-LG) increase its sensitization, we cross-linked β-LG with 2'-FL and used it to sensitize Balb/c mice, comparing it with nonglycosylated β-LG. Both 2'-FL-β-LG sensitization and oral 2'-FL intervention reduced allergic symptoms, specific antibodies (IgE, IgG, and IgG2a), inflammatory cytokine levels, and intestinal damage. 2'-FL also shifted T-cell differentiation, reduced cell surface expression of DC receptors, and enhanced gut microbial diversity. Oral 2'-FL showed the greatest efficacy, suggesting its potential for lowering milk allergenicity in formula.
Collapse
Affiliation(s)
- Xintong Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Fan Yang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Shuangyan Zheng
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China
| |
Collapse
|
2
|
Lu Y, Yang S, Fu TJ. Quantitation of milk proteins in thermally treated milk samples and commercial food products by ELISA test kits. Food Chem 2024; 455:139736. [PMID: 38823126 DOI: 10.1016/j.foodchem.2024.139736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
This study evaluated four ELISA kits for quantitation of milk proteins in thermally treated milk samples and food products. How reference materials may be used for comparison of kit performance was examined. Protein contents determined by Veratox Total Milk generally reflected those determined by the 660 nm total protein assay. BioKits BLG Kit was less affected by thermal treatment but resulted in overestimation of protein contents in samples that were boiled, autoclaved or dry-heated at ≤149 °C, while ELISA Systems Casein (ES Casein) and Beta-Lactoglobulin (ES BLG) assays underestimated protein levels in these samples. The four kits gave similar results for ice cream. Veratox registered higher concentrations in all products tested but its sensitivity was greatly lowered in retorted products. ES Casein underperformed Veratox for baked and retorted products. BioKits BLG maintained a better sensitivity towards fried, baked and retorted products while ES BLG exhibited reduced sensitivity for these products.
Collapse
Affiliation(s)
- Yingshuang Lu
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL 60501, USA.
| | - Shuopeng Yang
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, IL 60501, USA.
| | - Tong-Jen Fu
- U.S. Food and Drug Administration, Division of Food Processing Science and Technology, 6502 South Archer Road, Bedford Park, IL 60501, USA.
| |
Collapse
|
3
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Gräfenhahn M, Beyrer M. Plant-Based Meat Analogues in the Human Diet: What Are the Hazards? Foods 2024; 13:1541. [PMID: 38790841 PMCID: PMC11121679 DOI: 10.3390/foods13101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Research regarding meat analogues is mostly based on formulation and process development. Information concerning their safety, shelf life, and long-term nutritional and health effects is limited. This article reviews the existing literature and analyzes potential hazards introduced or modified throughout the processing chain of plant-based meat analogues via extrusion processing, encompassing nutritional, microbiological, chemical, and allergen aspects. It was found that the nutritional value of plant-based raw materials and proteins extracted thereof increases along the processing chain. However, the nutritional value of plant-based meat analogues is lower than that of e.g., animal-based products. Consequently, higher quantities of these products might be needed to achieve a nutritional profile similar to e.g., meat. This could lead to an increased ingestion of undigestible proteins and dietary fiber. Although dietary fibers are known to have many positive health benefits, they present a hazard since their consumption at high concentrations might lead to gastrointestinal reactions. Even though there is plenty of ongoing research on this topic, it is still not clear how the sole absorption of metabolites derived from plant-based products compared with animal-based products ultimately affects human health. Allergens were identified as a hazard since plant-based proteins can induce an allergic reaction, are known to have cross-reactivities with other allergens and cannot be eliminated during the processing of meat analogues. Microbiological hazards, especially the occurrence of spore- and non-spore-forming bacteria, do not represent a particular case if requirements and regulations are met. Lastly, it was concluded that there are still many unknown variables and open questions regarding potential hazards possibly present in meat analogues, including processing-related compounds such as n-nitrosamines, acrylamide, and heterocyclic aromatic amino acids.
Collapse
Affiliation(s)
- Maria Gräfenhahn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO VS), 1950 Sion, Switzerland
| | | |
Collapse
|
5
|
Zimmermann J, De Fazio L, Kaden-Volynets V, Hitzmann B, Bischoff SC. Consumption of Yeast-Fermented Wheat and Rye Breads Increases Colitis and Mortality in a Mouse Model of Colitis. Dig Dis Sci 2022; 67:4422-4433. [PMID: 35394589 PMCID: PMC9352744 DOI: 10.1007/s10620-022-07462-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/09/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cereals are known to trigger for wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Inflammatory processes and intestinal barrier impairment are suspected to be involved in NCWS, although the molecular triggers are unclear. AIMS We were interested if different bread types influence inflammatory processes and intestinal barrier function in a mouse model of inflammatory bowel disease. METHODS Epithelial caspase-8 gene knockout (Casp8ΔIEC) and control (Casp8fl) mice were randomized to eight groups, respectively. The groups received different diets for 28 days (gluten-free diet, gluten-rich diet 5 g%, or different types of bread at 50 g%). Breads varied regarding grain, milling and fermentation. All diets were isocaloric. RESULTS Regardless of the diet, Casp8ΔIEC mice showed pronounced inflammation in colon compared to ileum, whereas Casp8fl mice were hardly inflamed. Casp8fl mice could tolerate all bread types. Especially yeast fermented rye and wheat bread from superfine flour but not pure gluten challenge increased colitis and mortality in Casp8ΔIEC mice. Hepatic expression of lipopolysaccharide-binding protein and colonic expression of tumor necrosis factor-α genes were inversely related to survival. The bread diets, but not the gluten-rich diet, also decreased colonic tight junction expression to variable degrees, without clear association to survival and inflammation. CONCLUSIONS Bread components, especially those from yeast-fermented breads from wheat and rye, increase colitis and mortality in Casp8ΔIEC mice highly susceptible to intestinal inflammation, whereas control mice can tolerate all types of bread without inflammation. Yet unidentified bread components other than gluten seem to play the major role.
Collapse
Affiliation(s)
- Julia Zimmermann
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Luigia De Fazio
- Department of Medical and Surgical Science (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Valentina Kaden-Volynets
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Bernd Hitzmann
- Department of Process Analytics and Cereal Science, University of Hohenheim, Garbenstraße 23, 70599 Stuttgart, Germany
| | - Stephan C. Bischoff
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| |
Collapse
|
6
|
Zimmermann J, Longin FH, Schweinlin A, Basrai M, Bischoff SC. No Difference in Tolerance between Wheat and Spelt Bread in Patients with Suspected Non-Celiac Wheat Sensitivity. Nutrients 2022; 14:nu14142800. [PMID: 35889757 PMCID: PMC9319925 DOI: 10.3390/nu14142800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022] Open
Abstract
Individuals with suspected non-celiac wheat sensitivity (NCWS) often report better tolerance of spelt (Triticum aestivum ssp. spelta) compared to wheat (Triticum aestivum ssp. aestivum) bakery products. This experience has neither been validated nor explained on a molecular level. Therefore, we performed blinded wheat and spelt bread challenge in this patient group. Twenty-four adults with a history of NCWS but suspected spelt tolerance were challenged in a single-blinded crossover design over six weeks with six different study breads each at 300 g per day for 4 days followed by a washout phase of 3 days. Study breads comprised spelt and wheat breads made either after a traditional (T) or a current (C) recipe, resulting in four bread types plus a gluten-free bread with 1.5% added oligosaccharides (+FODMAP) and a gluten-free bread with 5% added wheat gluten (+Gluten). The main outcome parameter was the Irritable Bowel Syndrome—Severity Scoring System, which was higher than self-estimated by the participants after spelt bread consumption (p = 0.002 for T; p = 0.028 for C) and lower for wheat bread (p = 0.052 for T; p = 0.007 for C), resulting in no difference between wheat and spelt bread tolerance. The +FODMAP bread was better tolerated than both T breads (p = 0.003 for spelt; p = 0.068 for wheat) and equally well tolerated as both C breads and +Gluten breads after normalization to the washout scores. Neither signs of inflammation nor markers for intestinal barrier integrity were influenced. Our data do not confirm, on an objective basis, the differences in expected symptoms resulting from wheat and spelt products, suggesting a strong nocebo effect for wheat and a placebo effect for spelt.
Collapse
Affiliation(s)
- Julia Zimmermann
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (J.Z.); (A.S.); (M.B.)
| | - Friedrich H. Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany;
| | - Anna Schweinlin
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (J.Z.); (A.S.); (M.B.)
| | - Maryam Basrai
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (J.Z.); (A.S.); (M.B.)
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (J.Z.); (A.S.); (M.B.)
- Correspondence: ; Tel.: +49-711-459-24100
| |
Collapse
|
7
|
Insight into the mechanism of allergenicity decreasing in recombinant sarcoplasmic calcium-binding protein from shrimp (Litopenaeus vannamei) with thermal processing via spectroscopy and molecular dynamics simulation techniques. Food Res Int 2022; 157:111427. [DOI: 10.1016/j.foodres.2022.111427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
|
8
|
Wang J, He Z, Raghavan V. Soybean allergy: characteristics, mechanisms, detection and its reduction through novel food processing techniques. Crit Rev Food Sci Nutr 2022; 63:6182-6195. [PMID: 35075969 DOI: 10.1080/10408398.2022.2029345] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human beings have consumed soybean as an excellent food source for thousand years due to its rich protein, fatty acids, minerals, and fibers. However, soybeans were recognized as one of the big eight allergens resulting in allergic symptoms and even could lead to death. With the increasing demand for soybean products, the challenges caused by soybean allergy need to be solved urgently. This review detailly described the pathogenesis and clinical characteristics of soybean allergy, and also the advantages and disadvantages of four different diagnostic methods were summarized. The major soybean allergens and their structures were summarized. Three types of soybean allergy including Type I, III, and IV, which could trigger allergic reactions were reported in this review. Summary in four different diagnostic methods showed that double-blind, placebo-controlled food challenge is recognized as a gold standard for diagnosing soybean allergy. Three types of processing techniques in reducing soybean allergy were discussed, and the results concluded that some novel food processing techniques such as ultrasound, cold-plasma treatment, showed potential application in the reduction of soybean allergenicity. Further, some suggestions regarding the management and treatment of food allergies were addressed in this review.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Zhaoyi He
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Zhang L, Zhou R, Zhang J, Zhou P. Heat-induced denaturation and bioactivity changes of whey proteins. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Dasanayaka BP, Zhao J, Zhang J, Huang Y, Khan MU, Lin H, Li Z. Development of a sensitive sandwich-ELISA assay for reliable detection of fish residues in foods. Anal Biochem 2021; 635:114448. [PMID: 34742932 DOI: 10.1016/j.ab.2021.114448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
A new sandwich-type Enzyme-Linked Immunosorbent Assay (ELISA) method was developed based on goat IgG as capturing antibody and rabbit IgG as detecting antibody targeting soluble antigenic fish proteins in foods as detection targets. The assay has provided a relatively lower limit of quantitation (LoQ) for fish proteins with LoQ 0.5 ng/ml and appears highly sensitive. The analysis of 24 different substances, both raw and boiled, revealed no cross-reactivity above the cut-off point of the limit of quantitation. Recoveries of the SB spiked food matrixes were in the range of 83-131%. Assay precision testing proved that repeatability (<5%) and reproducibility (<11%) had an acceptable level of variation. The sandwich ELISA was capable of detecting all tested commercially important fish. As a potential analytical tool, the newly developed immunoenzymatic method is suitable for detecting undeclared fish residues in real food samples available in the market, thereby will help to reduce the incidents of fish allergies.
Collapse
Affiliation(s)
- Binaka Prabashini Dasanayaka
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Jiukai Zhang
- Agro-Product Safety Research Center, Chinese Academy of Inspection and Quarantine, CAIQ11 Ronghua Naniu, Yi Zhuang, Beijing, 100176, PR China
| | - Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| |
Collapse
|
11
|
Zhao L, Xie Q, Shi F, Liang S, Chen Q, Evivie SE, Qiu J, Li B, Huo G. Proteolytic activities of combined fermentation with Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 reduce antigenic response to cow milk proteins. J Dairy Sci 2021; 104:11499-11508. [PMID: 34454765 DOI: 10.3168/jds.2021-20668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/20/2021] [Indexed: 12/27/2022]
Abstract
Cow milk protein is one of the leading food allergens. This study aimed to develop an effective method for reducing milk sensitization by evaluating antigenicity of fermented skim milk protein using Lactobacillus helveticus KLDS 1.8701, Lactobacillus plantarum KLDS 1.0386, and a combination of both strains. The proteolytic systems of strains in terms of genotype and phenotype are characterized by complete genome sequence, and evaluation the antigenicity of skim milk proteins was determined by ELISA and liquid chromatography with tandem mass spectrometry. Our results showed that the genomes encoded a variety of peptidase genes. For fermented skim milk, the degree of hydrolysis of the combined strains was higher than that of individual strain. Electrophoresis showed that the band color density of α-casein (α-CN) by fermentation of the combined strains was reduced when compared with control group. The fermentation process of the combined strains inhibited α-CN, β-lactoglobulin, and α-lactalbumin antigenicity by 69.13, 36.10, and 20.92, respectively. Major allergic epitopes of α-CN and β-lactoglobulin were cleaved by abundant proteases of combined strains. In all, this study showed that the fermentation process involving both L. helveticus and L. plantarum strains could reduce cow milk protein allergenicity through the combination of cell-envelope proteinase and peptidase on α-CN.
Collapse
Affiliation(s)
- Lina Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihaer 164800, China
| | - Fengyi Shi
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Qingxue Chen
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Smith Etareri Evivie
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China; Department of Food Science and Human Nutrition, University of Benin, Benin City 300001, Nigeria; Department of Animal Science, University of Benin, Benin City 300001, Nigeria
| | - Ji Qiu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| | - Guicheng Huo
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Zimmermann J, Hubel P, Pfannstiel J, Afzal M, Longin CFH, Hitzmann B, Götz H, Bischoff SC. Comprehensive proteome analysis of bread deciphering the allergenic potential of bread wheat, spelt and rye. J Proteomics 2021; 247:104318. [PMID: 34224905 DOI: 10.1016/j.jprot.2021.104318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Cereal products like flour and bread are known to trigger diseases such as wheat allergy, celiac disease and non-celiac wheat sensitivity (NCWS). Some of these diseases are caused by allergenic proteins, the expression of which might vary depending on the grain type and manufacturing processes. Therefore, we examined the protein composition and abundance of potentially allergenic proteins in flours from bread wheat, spelt and rye, and corresponding breads. MATERIALS AND METHODS Using Nano-LC-ESI-MS/MS and label free quantification (LFQ) we analyzed the proteome of six different bread flours (wholegrain and superfine flours from rye, spelt and bread wheat) and 14 bread types (yeast and sourdough fermented breads from all flours and wheat breads plus/minus bread improver). Potentially allergenic proteins in flours and breads were functionally categorized using the Pfam database and relatively quantified by LFQ. RESULTS We could show that almost equal numbers of proteins can be identified in rye- and spelt samples compared to wheat samples using the Uniprot bread wheat protein database, indicating high sequence conservation between cereals. In total, 4424 proteins were identified in the 20 flour and bread samples. The average number of identified proteins in flour (2719 ± 243) was slightly higher than in bread (2283 ± 232; P < 0.001). In wheat- and spelt wholegrain flour higher protein numbers (wheat: 2891 ± 90; spelt: 2743 ± 140) were identified on average than in superfine flour (wheat: 2562 ± 79; P = 0.009; spelt: 2431 ± 140; P = 0.004). Neither the absolute number nor the abundance distribution of potentially allergenic proteins were dependent on the flour type or the fermentation process, but known allergenic proteins like gliadins showed higher relative abundance in spelt- and wheat samples, compared to rye samples. CONCLUSION We provide comprehensive proteome data for six flour types and related breads showing that the grain species have greater influence on proteome composition than milling and fermentation processes. Our data indicate that allergenic proteins are not selectively degraded during bread production and are more abundant in bread wheat and spelt compared to rye. SIGNIFICANCE Our proteomics study revealed that bread contains a number of potentially and proven allergenic proteins. Most likely allergenicity is not dependent on milling or conventional fermentation processes, but on the grain type. Relative abundance of allergenic proteins was higher in spelt- and wheat samples than in rye samples. Considering rye bread as better suited to atopic individuals predisposed to react to cereal allergens, clinical trials are warranted to verify this assumption.
Collapse
Affiliation(s)
- Julia Zimmermann
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Fruwirthstrasse 12, Stuttgart 70593, Germany.
| | - Philipp Hubel
- Core Facility Hohenheim, Mass Spectrometry Module, University of Hohenheim, August-von-Hartmann-Strasse 3, 70599 Stuttgart, Germany.
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Module, University of Hohenheim, August-von-Hartmann-Strasse 3, 70599 Stuttgart, Germany.
| | - Muhammad Afzal
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany.
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany.
| | - Bernd Hitzmann
- Department of Process Analytics and Cereal Science, University of Hohenheim, Garbenstraße, 23 70599 Stuttgart, Germany.
| | - Herbert Götz
- Department of Process Analytics and Cereal Science, University of Hohenheim, Garbenstraße, 23 70599 Stuttgart, Germany.
| | - Stephan C Bischoff
- Department of Nutritional Medicine/Prevention, University of Hohenheim, Fruwirthstrasse 12, Stuttgart 70593, Germany.
| |
Collapse
|
13
|
Effects of Pulsed Electric Fields and Ultrasound Processing on Proteins and Enzymes: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9040722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is increasing demand among consumers for food products free of chemical preservatives, minimally processed and have fresh-like natural flavors. To meet these growing demands, the industries and researchers are finding alternative processing methods, which involve nonthermal methods to obtain a quality product that meets the consumer demands and adheres to the food safety protocols. In the past two decades’ various research groups have developed a wide range of nonthermal processing methods, of which few have shown potential in replacing the traditional thermal processing systems. Among all the methods, ultrasonication (US) and pulsed electric field (PEF) seem to be the most effective in attaining desirable food products. Several researchers have shown that these methods significantly affect various major and minor nutritional components present in food, including proteins and enzymes. In this review, we are going to discuss the effect of nonthermal methods on proteins, including enzymes. This review comprises results from the latest studies conducted from all over the world, which would help the research community and industry investigate the future pathway for nonthermal processing methods, especially in preserving the nutritional safety and integrity of the food.
Collapse
|
14
|
Spöttel J, Brockelt J, Badekow S, Rohn S. Immunological Analysis of Isothiocyanate-Modified α-Lactalbumin Using High-Performance Thin Layer Chromatography. Molecules 2021; 26:molecules26071842. [PMID: 33805932 PMCID: PMC8036266 DOI: 10.3390/molecules26071842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Undirected modifications between food proteins and secondary plant metabolites can occur during food processing. The results of covalent interactions can alter the functional and biological properties of the proteins. The present work studied the extent of which covalent conjugation of the bioactive metabolite benzyl isothiocyanate (BITC; a glucosinolate breakdown product) to the whey protein α-lactalbumin affects the protein’s allergenicity. Additional to the immunological analysis of native untreated and BITC-modified α-lactalbumin, the analysis of antigenic properties of proteolytically digested protein derivatives was also performed by high performance thin layer chromatography and immunostaining. As a result of the chemical modifications, structural changes in the protein molecule affected the allergenic properties. In this process, epitopes are destroyed or inactivated, but at the same time, buried epitopes can be exposed or newly formed, so that the net effect was an increase in allergenicity, in this case. Results from the tryptic hydrolysis suggest that BITC conjugation sterically hindered the cleavage sites for the enzyme, resulting in reduced digestibility and allergenicity. Residual antigenicity can be still present as short peptide fragments that provide epitopes. The desire to make food safer for allergy sufferers and to protect sensitized individuals from an allergenic reaction makes it clear that the detection of food antigens is mandatory; especially by considering protein interactions.
Collapse
Affiliation(s)
- Jenny Spöttel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Johannes Brockelt
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Svenja Badekow
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Correspondence: ; Tel.: +49-30-314-72583
| |
Collapse
|
15
|
Bredariol P, Vanin FM. Bread baking Review: Insight into Technological Aspects in order to Preserve Nutrition. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1878211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Priscila Bredariol
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Pirassununga, SP, Brazil
| | - Fernanda Maria Vanin
- Food Engineering Department, University of São Paulo, Faculty of Animal Science and Food Engineering (USP/FZEA), Laboratory of Bread and Dough Process (LAPROPAMA), Pirassununga, SP, Brazil
| |
Collapse
|
16
|
Akharume FU, Aluko RE, Adedeji AA. Modification of plant proteins for improved functionality: A review. Compr Rev Food Sci Food Saf 2021; 20:198-224. [DOI: 10.1111/1541-4337.12688] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Felix U. Akharume
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals University of Manitoba Winnipeg Manitoba Canada
| | - Akinbode A. Adedeji
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
17
|
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end‐products: Perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf 2020; 19:2559-2587. [DOI: 10.1111/1541-4337.12593] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| |
Collapse
|
18
|
Diowksz A, Malik A, Jaśniewska A, Leszczyńska J. The Inhibition of Amylase and ACE Enzyme and the Reduction of Immunoreactivity of Sourdough Bread. Foods 2020; 9:foods9050656. [PMID: 32438749 PMCID: PMC7278618 DOI: 10.3390/foods9050656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
This study examines the potential health benefits of different types of wheat sourdough bread against diseases of civilization. Celiac disease, diabetes and hypertension affect large numbers of the world's population, increasing demand for novel treatments and ways of improving patient welfare. Different types of artisan breads were subjected to in vitro simulated digestion prior to analysis. The G12 test and ELISA with human sera were used for immunoreactivity analysis. The activity of α-amylase inhibitors and angiotensin-converting enzymes (ACE) was also assessed. The addition of sourdough to the analyzed wheat bread raised the content of α-amylase inhibitors and angiotensin-converting enzyme inhibitors while reducing their immunoreactivity. However, despite decreases in the antigenicity of the wheat flour proteins, the sera showed various reactions, depending on the individual patient's susceptibility to gluten.
Collapse
Affiliation(s)
- Anna Diowksz
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (A.D.); (A.J.)
| | - Alicja Malik
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Agnieszka Jaśniewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (A.D.); (A.J.)
| | - Joanna Leszczyńska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland;
- Correspondence:
| |
Collapse
|
19
|
Xi J, Li Z, Fan Y. Recent advances in continuous extraction of bioactive ingredients from food-processing wastes by pulsed electric fields. Crit Rev Food Sci Nutr 2020; 61:1738-1750. [PMID: 32406247 DOI: 10.1080/10408398.2020.1765308] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The food processing produces a great amount of wastes that are rich in nutrients. Extraction is the first and most important step in recovery and purification of active ingredients from these wastes. The traditional extraction technologies are known to be laborious and time-consuming, require large volumes of organic solvent, have high temperature and energy costs, and obtain relatively low extraction efficiency. In recent 10 years, a novel, efficient and green extraction method, pulsed electric fields (PEFs) continuous extraction, which is emerging non-thermal food-processing technology, has shown great promise in extracting these food wastes. This work gives an overview of development in the use of PEF continuous extraction for obtaining bioactive ingredients from food-processing wastes. The technology is described in detail with respect to the mechanism, equipment, critical parameters. The protocols and applications of the technology in the extraction of food-processing wastes are comprehensively summarized. Finally, the degradation of bioactive ingredients, industrial applications, problem of novel food, consumer acceptance, and future trends of the technology are discussed. The PEF continuous extraction is considered as the ideal technology of high efficiency and low temperature for natural ingredients extraction. The technology possesses many remarkable potential applications in the food-processing industries compared to the conventional extraction methods.
Collapse
Affiliation(s)
- Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Zongming Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yang Fan
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Hall F, Liceaga A. Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103634] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
21
|
Nolasco E, Guha S, Majumder K. Bioactive Egg Proteins. EGGS AS FUNCTIONAL FOODS AND NUTRACEUTICALS FOR HUMAN HEALTH 2019. [DOI: 10.1039/9781788013833-00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nutritional excellence of chicken egg is derived from its task as a life-giving medium, supplying the necessary nutrients to the hen's embryo while protecting it from external threats. Additionally, egg proteins possess unique biological activities above and beyond their known functional and nutritional roles. In the last few decades, extensive research has been done to evaluate the various biological activities of egg proteins and protein-derived peptides. Egg proteins and protein-derived peptides have been attributed to diverse biological activities, the most well-known being their antimicrobial properties. However, egg proteins and peptides have been shown to have other biological activities, such as antihypertensive, antioxidant, anticancer, immunomodulatory, and protease inhibitory activity. Egg-derived bioactive proteins have had a relevant scientific impact and exhibit promising applicability as an ingredient for the development of functional foods and nutraceuticals. However, it is critical to understand the effects of these proteins in signaling pathways to delineate their molecular mechanisms of action. Further studies are required to fill the current knowledge gaps. Therefore, the purpose of the chapter is to illustrate the present knowledge of the bioactivity of different egg proteins and their physiological effects.
Collapse
Affiliation(s)
- Emerson Nolasco
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| | - Snigdha Guha
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| | - Kaustav Majumder
- University of Nebraska-Lincoln, Department of Food Science and Technology 1901 N 21 St Lincoln NE 68588-6205 USA
| |
Collapse
|
22
|
A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chem 2019; 275:214-223. [DOI: 10.1016/j.foodchem.2018.09.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
|
23
|
Abstract
An extensive safety assessment process exists for genetically-engineered (GE) crops. The assessment includes an evaluation of the introduced protein as well as the crop containing the protein with the goal of demonstrating the GE crop is "as-safe-as" non-GE crops in the food supply. One of the evaluations for GE crops is to assess the expressed protein for allergenic potential. Currently, no single factor is recognized as a predictor for protein allergenicity. Therefore, a weight-of-the-evidence approach, which accounts for a variety of factors and approaches for an overall assessment of allergenic potential, is conducted. This assessment includes an evaluation of the history of exposure and safety of the gene(s) source; protein structure (e.g. amino acid sequence identity to human allergens); stability of the protein to pepsin digestion in vitro; heat stability of the protein; glycosylation status; and when appropriate, specific IgE binding studies with sera from relevant clinically allergic subjects. Since GE crops were first commercialized over 20 years ago, there is no proof that the introduced novel protein(s) in any commercialized GE food crop has caused food allergy.
Collapse
|
24
|
Rolland JM, Varese NP, Abramovitch JB, Anania J, Nugraha R, Kamath S, Hazard A, Lopata AL, O'Hehir RE. Effect of Heat Processing on IgE Reactivity and Cross-Reactivity of Tropomyosin and Other Allergens of Asia-Pacific Mollusc Species: Identification of Novel Sydney Rock Oyster Tropomyosin Sac g 1. Mol Nutr Food Res 2018; 62:e1800148. [PMID: 29756679 PMCID: PMC6099307 DOI: 10.1002/mnfr.201800148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Indexed: 01/24/2023]
Abstract
SCOPE Shellfish allergy is an increasing global health priority, frequently affecting adults. Molluscs are an important shellfish group causing food allergy but knowledge of their allergens and cross-reactivity is limited. Optimal diagnosis of mollusc allergy enabling accurate advice on food avoidance is difficult. Allergens of four frequently ingested Asia-Pacific molluscs are characterized: Sydney rock oyster (Saccostrea glomerata), blue mussel (Mytilus edulis), saucer scallop (Amusium balloti), and southern calamari (Sepioteuthis australis), examining cross-reactivity between species and with blue swimmer crab tropomyosin, Por p 1. METHODS AND RESULTS IgE ELISA showed that cooking increased IgE reactivity of mollusc extracts and basophil activation confirmed biologically relevant IgE reactivity. Immunoblotting demonstrated strong IgE reactivity of several proteins including one corresponding to heat-stable tropomyosin in all species (37-40 kDa). IgE-reactive Sydney rock oyster proteins were identified by mass spectrometry, and the novel major oyster tropomyosin allergen was cloned, sequenced, and designated Sac g 1 by the IUIS. Oyster extracts showed highest IgE cross-reactivity with other molluscs, while mussel cross-reactivity was weakest. Inhibition immunoblotting demonstrated high cross-reactivity between tropomyosins of mollusc and crustacean species. CONCLUSION These findings inform novel approaches for reliable diagnosis and improved management of mollusc allergy.
Collapse
Affiliation(s)
- Jennifer M. Rolland
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Nirupama P. Varese
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jodie B. Abramovitch
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jessica Anania
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Roni Nugraha
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia,Department of Aquatic Product TechnologyBogor Agricultural UniversityBogorIndonesia
| | - Sandip Kamath
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia
| | - Anita Hazard
- Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Andreas L. Lopata
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia
| | - Robyn E. O'Hehir
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
25
|
Khan MU, Ahmed I, Lin H, Li Z, Costa J, Mafra I, Chen Y, Wu YN. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Crit Rev Food Sci Nutr 2018; 59:2807-2830. [DOI: 10.1080/10408398.2018.1471658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| | - Yong-Ning Wu
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| |
Collapse
|
26
|
Golkar A, Milani JM, Vasiljevic T. Altering allergenicity of cow's milk by food processing for applications in infant formula. Crit Rev Food Sci Nutr 2018; 59:159-172. [DOI: 10.1080/10408398.2017.1363156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Abdolkhalegh Golkar
- Department of Food Science & Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Jafar M. Milani
- Department of Food Science & Technology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Han XY, Yang H, Rao ST, Liu GY, Hu MJ, Zeng BC, Cao MJ, Liu GM. The Maillard Reaction Reduced the Sensitization of Tropomyosin and Arginine Kinase from Scylla paramamosain, Simultaneously. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2934-2943. [PMID: 29499608 DOI: 10.1021/acs.jafc.7b05195] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Maillard reaction was established to reduce the sensitization of tropomyosin (TM) and arginine kinase (AK) from Scylla paramamosain, and the mechanism of the attenuated sensitization was investigated. In the present study, the Maillard reaction conditions were optimized for heating at 100 °C for 60 min (pH 8.5) with arabinose. A low level of allergenicity in mice was shown by the levels of allergen-specific antibodies, and more Th1 and less Th2 cells cytokines produced and associated transcription factors with the Maillard reacted allergen (mAllergen). The tolerance potency in mice was demonstrated by the increased ratio of Th1/Th2 cytokines. Moreover, mass spectrometry analysis showed that some key amino acids of IgE-binding epitopes (K112, R125, R133 of TM; K33, K118, R202 of AK) were modified by the Maillard reaction. The Maillard reaction with arabinose reduced the sensitization of TM and AK, which may be due to the masked epitopes.
Collapse
Affiliation(s)
- Xin-Yu Han
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian China
| | - Huang Yang
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian China
| | - Shi-Tao Rao
- Department of Psychiatry, School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong , SAR , China
| | - Guang-Yu Liu
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian China
| | - Meng-Jun Hu
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian China
| | - Bin-Chang Zeng
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , Xiamen , Fujian China
| |
Collapse
|
28
|
Cuadrado C, Cheng H, Sanchiz A, Ballesteros I, Easson M, Grimm CC, Dieguez MC, Linacero R, Burbano C, Maleki SJ. Influence of enzymatic hydrolysis on the allergenic reactivity of processed cashew and pistachio. Food Chem 2018; 241:372-379. [DOI: 10.1016/j.foodchem.2017.08.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/26/2022]
|
29
|
Analysis of Protein-Phenolic Compound Modifications Using Electrochemistry Coupled to Mass Spectrometry. Molecules 2018; 23:molecules23020264. [PMID: 29382123 PMCID: PMC6017572 DOI: 10.3390/molecules23020264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 01/22/2023] Open
Abstract
In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.
Collapse
|
30
|
Azdad O, Mejrhit N, El Kabbaoui M, Chda A, Ouahidi I, Tazi A, Bencheikh R, Aarab L. Effect of heating and enzymatic hydrolysis on casein cow milk sensitivity in Moroccan population. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1391179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ouarda Azdad
- Laboratory of Bioactive Molecules (LBM), Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Najlae Mejrhit
- Laboratory of Bioactive Molecules (LBM), Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El Kabbaoui
- Laboratory of Bioactive Molecules (LBM), Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Alae Chda
- Laboratory of Bioactive Molecules (LBM), Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibtissam Ouahidi
- High Institute of Nursing and Technical Health (ISPITS Fez), Ministry of Health, Fez, Morocco
| | - Abdelali Tazi
- Laboratory of Bioactive Molecules (LBM), Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Rachid Bencheikh
- Laboratory of Bioactive Molecules (LBM), Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Lotfi Aarab
- Laboratory of Bioactive Molecules (LBM), Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
31
|
Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD. Maillard reaction in food allergy: Pros and cons. Crit Rev Food Sci Nutr 2017; 58:208-226. [PMID: 26980434 DOI: 10.1080/10408398.2016.1152949] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food allergens have a notable potential to induce various health concerns in susceptible individuals. The majority of allergenic foods are usually subjected to thermal processing prior to their consumption. However, during thermal processing and long storage of foods, Maillard reaction (MR) often takes place. The MR is a non-enzymatic glycation reaction between the carbonyl group of reducing sugars and compounds having free amino groups. MR may sometimes be beneficial by damaging epitope of allergens and reducing allergenic potential, while exacerbation in allergic reactions may also occur due to changes in the motifs of epitopes or neoallergen generation. Apart from these modulations, non-enzymatic glycation can also modify the food protein(s) with various type of advance glycation end products (AGEs) such as Nϵ-(carboxymethyl-)lysine (CML), pentosidine, pyrraline, and methylglyoxal-H1 derived from MR. These Maillard products may act as immunogen by inducing the activation and proliferation of various immune cells. Literature is available to understand pathogenesis of glycation in the context of various diseases but there is hardly any review that can provide a thorough insight on the impact of glycation in food allergy. Therefore, present review explores the pathogenesis with special reference to food allergy caused by non-enzymatic glycation as well as AGEs.
Collapse
Affiliation(s)
- Rinkesh Kumar Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,b Department of Biosciences , Integral University , Lucknow , India
| | - Kriti Gupta
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | - Akanksha Sharma
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India.,c Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Capmus , Lucknow , India
| | - Mukul Das
- a Food, Drug and Chemical Toxicology Group, Indian Institute of Toxicology Research , Lucknow -, India
| | | | | |
Collapse
|
32
|
Vanga SK, Raghavan V. Processing effects on tree nut allergens: A review. Crit Rev Food Sci Nutr 2017; 57:3794-3806. [DOI: 10.1080/10408398.2016.1175415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sai Kranthi Vanga
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
33
|
Bogahawaththa D, Chandrapala J, Vasiljevic T. Modulation of milk immunogenicity by thermal processing. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Claude M, Bouchaud G, Lupi R, Castan L, Tranquet O, Denery-Papini S, Bodinier M, Brossard C. How Proteins Aggregate Can Reduce Allergenicity: Comparison of Ovalbumins Heated under Opposite Electrostatic Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3693-3701. [PMID: 28434227 DOI: 10.1021/acs.jafc.7b00676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heated foods are recommended for avoiding sensitization to food proteins, but depending on the physicochemical conditions during heating, more or less unfolded proteins aggregate differently. Whether the aggregation process could modulate allergenicity was investigated. Heating ovalbumin in opposite electrostatic conditions led to small (A-s, about 50 nm) and large (A-L, about 65 μm) aggregates that were used to sensitize mice. The symptoms upon oral challenge and rat basophil leukemia degranulation with native ovalbumin differed on the basis of which aggregates were used during the sensitization. Immunoglobulin-E (IgE) production was significantly lower with A-s than with A-L. Although two common linear IgE-epitopes were found, the aggregates bound and cross-linked IgE similarly or differently, depending on the sensitizing aggregate. The ovalbumin aggregates thus displayed a lower allergenic potential when formed under repulsive rather than nonrepulsive electrostatic conditions. This further demonstrates that food structure modulates the immune response during the sensitization phase with some effects on the elicitation phase of an allergic reaction and argues for the need to characterize the aggregation state of allergens.
Collapse
Affiliation(s)
- Mathilde Claude
- UR 1268 Biopolymers Interactions Assemblies, INRA , Nantes, France
| | - Grégory Bouchaud
- UR 1268 Biopolymers Interactions Assemblies, INRA , Nantes, France
| | - Roberta Lupi
- UR 1268 Biopolymers Interactions Assemblies, INRA , Nantes, France
| | - Laure Castan
- UR 1268 Biopolymers Interactions Assemblies, INRA , Nantes, France
- UMR 1087 Institut du Thorax, INSERM , Nantes, France
| | - Olivier Tranquet
- UR 1268 Biopolymers Interactions Assemblies, INRA , Nantes, France
| | | | - Marie Bodinier
- UR 1268 Biopolymers Interactions Assemblies, INRA , Nantes, France
| | - Chantal Brossard
- UR 1268 Biopolymers Interactions Assemblies, INRA , Nantes, France
| |
Collapse
|
35
|
Daliri EBM, Oh DH, Lee BH. Bioactive Peptides. Foods 2017; 6:E32. [PMID: 28445415 PMCID: PMC5447908 DOI: 10.3390/foods6050032] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea.
| | - Deog H Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea.
| | - Byong H Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea.
- Department of Microbiology/Immunology, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
36
|
Zhang W, Zhu Q, Zhang T, Cai Q, Chen Q. Thermal processing effects on peanut allergen Ara h 2 allergenicity in mice and its antigenic epitope structure. Food Chem 2016; 212:657-62. [DOI: 10.1016/j.foodchem.2016.06.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
|
37
|
Abstract
Food allergy is receiving increased attention in recent years. Because there is currently no known cure for food allergy, avoiding the offending food is the best defense for sensitive individuals. Type I food allergy is mediated by food proteins, and thus, theoretically, any food protein is a potential allergen. Variability of an individual's immune system further complicates attempts to understand allergen-antibody interaction. In this article, we briefly review food allergy occurrence, prevalence, mechanisms, and detection. Efforts aimed at reducing/eliminating allergens through food processing are discussed. Future research needs are addressed.
Collapse
Affiliation(s)
- Shridhar K Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Changqi Liu
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Valerie D Zaffran
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| |
Collapse
|
38
|
Iqbal A, Shah F, Hamayun M, Ahmad A, Hussain A, Waqas M, Kang SM, Lee IJ. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA. Food Nutr Res 2016; 60:28945. [PMID: 26931300 PMCID: PMC4773821 DOI: 10.3402/fnr.v60.28945] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 11/14/2022] Open
Abstract
Food allergies are an emerging public health problem in industrialized areas of the world. They represent a considerable health problem in these areas because of the relatively high number of reported cases. Usually, food allergens are proteins or glycoproteins with a molecular mass ranging from 10 to 70 kDa. Among the food allergies, peanut is accounted to be responsible for more than 50% of the food allergy fatalities. Threshold doses for peanut allergenic reactions have been found to range from as low as 100 µg to 1 g of peanut protein, which equal to 400 µg to 4 g peanut meal. Allergens from peanut are mainly seed storage proteins that are composed of conglutin, vicilin, and glycinin families. Several peanut proteins have been identified to induce allergic reactions, particularly Ara h 1-11. This review is mainly focused on different classes of peanut allergens, the effect of thermal and chemical treatment of peanut allergens on the IgY binding and detectability of these allergens by enzyme linked immunosorbent assay (ELISA) to provide knowledge for food industry.
Collapse
Affiliation(s)
- Amjad Iqbal
- Department of Food Safety and Food Quality, University of Gent, Gent, Belgium
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farooq Shah
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Waqas
- School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea;
| |
Collapse
|
39
|
Liu F, Teodorowicz M, van Boekel MAJS, Wichers HJ, Hettinga KA. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands. Food Funct 2016; 7:239-49. [DOI: 10.1039/c5fo00718f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins.
Collapse
Affiliation(s)
- Fahui Liu
- Food Quality & Design Group
- Wageningen University & Research Centre
- 6700EV Wageningen
- The Netherlands
| | - Małgorzata Teodorowicz
- Cell Biology and Immunology Group
- Wageningen University and Research Centre
- 6708WD Wageningen
- The Netherlands
| | | | - Harry J. Wichers
- Cell Biology and Immunology Group
- Wageningen University and Research Centre
- 6708WD Wageningen
- The Netherlands
- Food and Biobased Research
| | - Kasper A. Hettinga
- Food Quality & Design Group
- Wageningen University & Research Centre
- 6700EV Wageningen
- The Netherlands
| |
Collapse
|
40
|
Vanga SK, Singh A, Raghavan V. Review of conventional and novel food processing methods on food allergens. Crit Rev Food Sci Nutr 2015; 57:2077-2094. [DOI: 10.1080/10408398.2015.1045965] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sai Kranthi Vanga
- Faculty of Agriculture and Environmental Studies, Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Ashutosh Singh
- Faculty of Agriculture and Environmental Studies, Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Vijaya Raghavan
- Faculty of Agriculture and Environmental Studies, Department of Bioresource Engineering, McGill University, Quebec, Canada
| |
Collapse
|
41
|
Downs ML, Simpson A, Custovic A, Semic-Jusufagic A, Bartra J, Fernandez-Rivas M, Taylor SL, Baumert JL, Mills ENC. Insoluble and soluble roasted walnut proteins retain antibody reactivity. Food Chem 2015; 194:1013-21. [PMID: 26471647 DOI: 10.1016/j.foodchem.2015.08.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Thermal processing techniques commonly used during food production have the potential to impact food allergens by inducing physical and/or chemical changes to the proteins. English walnuts (Juglans regia) are among the most commonly allergenic tree nuts, but little information is available regarding how walnut allergens respond to thermal processing. This study evaluated the effects of dry roasting (132 or 180°C for 5, 10, or 20min) on the solubility and immunoreactivity of walnut proteins. A dramatic decrease in walnut protein solubility was observed following dry roasting at 180°C for 20min. However, both the soluble and insoluble protein fractions from roasted walnuts maintained substantial amounts of IgG immunoreactivity (using anti-raw and anti-roasted walnut antisera), with similar patterns of reactivity observed for human IgE from walnut-allergic individuals. Thus, walnut proteins are relatively stable under certain thermal processing conditions, and IgE reactivity remains present even when insoluble aggregates are formed.
Collapse
Affiliation(s)
- Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, 1901 North 21st Street, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA; Institute of Inflammation and Repair, Manchester Academic Health Sciences Centre and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Angela Simpson
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester & Respiratory and Allergy Clinical Research Facility, Education and Research Centre, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK
| | - Adnan Custovic
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester & Respiratory and Allergy Clinical Research Facility, Education and Research Centre, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK
| | - Aida Semic-Jusufagic
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester & Respiratory and Allergy Clinical Research Facility, Education and Research Centre, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK
| | - Joan Bartra
- Allergy Unit, Service of Pneumology and Respiratory Allergy, Hospital Clínic (ICT), Barcelona, Spain
| | | | - Steve L Taylor
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, 1901 North 21st Street, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Joseph L Baumert
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, 1901 North 21st Street, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - E N Clare Mills
- Institute of Inflammation and Repair, Manchester Academic Health Sciences Centre and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester & Respiratory and Allergy Clinical Research Facility, Education and Research Centre, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK
| |
Collapse
|
42
|
Vanga SK, Singh A, Kalkan F, Gariepy Y, Orsat V, Raghavan V. Effect of Thermal and High Electric Fields on Secondary Structure of Peanut Protein. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2015.1071841] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sai Kranthi Vanga
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Ashutosh Singh
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Fatih Kalkan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Yvan Gariepy
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Valerie Orsat
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
43
|
Song Y, Cui C, Zhu H, Li Q, Zhao F, Jin Y. Expression, purification and characterization of zinc-finger nuclease to knockout the goat beta-lactoglobulin gene. Protein Expr Purif 2015; 112:1-7. [DOI: 10.1016/j.pep.2015.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/12/2023]
|
44
|
Effect of thermal and electric field treatment on the conformation of Ara h 6 peanut protein allergen. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Diesner SC, Schultz C, Ackaert C, Oostingh GJ, Ondracek A, Stremnitzer C, Singer J, Heiden D, Roth-Walter F, Fazekas J, Assmann VE, Jensen-Jarolim E, Stutz H, Duschl A, Untersmayr E. Nitration of β-Lactoglobulin but Not of Ovomucoid Enhances Anaphylactic Responses in Food Allergic Mice. PLoS One 2015; 10:e0126279. [PMID: 25955653 PMCID: PMC4425501 DOI: 10.1371/journal.pone.0126279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
Background We revealed in previous studies that nitration of food proteins reduces the risk of de novo sensitization in a murine food allergy model. In contrast, in situations with preformed specific IgE antibodies, in vitro experiments suggested an increased capacity of effector cell activation by nitrated food proteins. Objective The aim of this study was to investigate the influence of protein nitration on the effector phase of food allergy. Design BALB/c mice were immunized intraperitoneally (i.p.) with the milk allergen β-lactoglobulin (BLG) or the egg allergen ovomucoid (OVM), followed by intragastric (i.g.) gavages to induce a strong local inflammatory response and allergen-specific antibodies. Subsequently, naïve and allergic mice were intravenously (i.v.) challenged with untreated, sham-nitrated or nitrated BLG or OVM. Anaphylaxis was monitored by measuring core body temperature and determination of mouse mast cell protease-1 (mMCP-1) levels in blood. Results A significant drop of body temperature accompanied with significantly elevated concentrations of the anaphylaxis marker mMCP-1 were only observed in BLG allergic animals challenged with nitrated BLG and not in OVM allergic mice challenged with nitrated OVM. SDS-PAGE and circular dichroism analysis of the differentially modified allergens revealed an effect of nitration on the secondary protein structure exclusively for BLG together with enhanced protein aggregation. Conclusion Our data suggest that nitration affects differently the food allergens BLG and OVM. In the case of BLG, structural changes favored dimerization possibly explaining the increased anaphylactic reactivity in BLG allergic animals.
Collapse
Affiliation(s)
- Susanne C. Diesner
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Cornelia Schultz
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Chloé Ackaert
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Gertie J. Oostingh
- Biomedical Sciences, Salzburg University of Applied Sciences, Puch/Salzburg, Austria
| | - Anna Ondracek
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Caroline Stremnitzer
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Josef Singer
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Denise Heiden
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Judit Fazekas
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vera E. Assmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Hanno Stutz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
46
|
Yao M, Xu Q, Luo Y, Shi J, Li Z. Study on reducing antigenic response and IgE-binding inhibitions of four milk proteins of Lactobacillus casei 1134. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1303-1312. [PMID: 25042354 DOI: 10.1002/jsfa.6823] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cow's milk allergy has aroused public concern. The aim of this study was to investigate the effects of fermentation by Lactobacillus casei 1134 on the antigenicity and allergenicity (IgE-binding inhibitions) of milk proteins. The effects of pH value on the antigenicity and allergenicity of four milk proteins (α-lactalbumin, β-lactoglobulin, α-casein and β-casein) were examined by indirect competitive enzyme-linked immunosorbent assay. The free amino acids which were produced in the fermentation process were analysed and the proteolysis of milk proteins was detected. RESULTS Fermentation by L. casei 1134 could significantly reduce the antigenicity and allergenicity of the four proteins in reconstituted milk. The allergenicity of milk proteins was further reduced in the process of simulated gastrointestinal digestion. Moreover, we could deduce that one of the potential factors of antigenicity was lactic acid with the comparison of the antigenicity of the four proteins between L. casei 1134 fermented milk and lactic acid milk at different pH values. CONCLUSION There are many factors which can affect the milk proteins allergen, including lactic acid and proteolytic enzymes.
Collapse
Affiliation(s)
- Minjing Yao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 112, Beijing, 100083, P.R. China
| | | | | | | | | |
Collapse
|
47
|
Saez P, Borquez A, Dantagnan P, Hernández A. Effects of dehulling, steam-cooking and microwave-irradiation on digestive value of white lupin (Lupinus albus) seed meal for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Arch Anim Nutr 2015; 69:143-57. [DOI: 10.1080/1745039x.2015.1009613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Khuda SE, Jackson LS, Fu TJ, Williams KM. Effects of processing on the recovery of food allergens from a model dark chocolate matrix. Food Chem 2015; 168:580-7. [DOI: 10.1016/j.foodchem.2014.07.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/11/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
49
|
Lee HS, Kim MN, Hong JY, Heo WI, Kim KW, Sohn MH, Kim KE, Lee KE, Park JW. The effect of heat treatment or hydrolysis on cow's milk protein distributions and antigenicities. ALLERGY ASTHMA & RESPIRATORY DISEASE 2014. [DOI: 10.4168/aard.2014.2.4.259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hee Seon Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yeon Hong
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Won Il Heo
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu-Earn Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Eun Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Yao M, Luo Y, Shi J, Zhou Y, Xu Q, Li Z. Effects of fermentation byLactobacillus rhamnosus GGon the antigenicity and allergenicity of four cows' milk proteins. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2013.852163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|