1
|
Zhao HM, Zheng DF, Feng NJ, Zhou GS, Khan A, Lu XT, Deng P, Zhou H, Du YW. Regulatory effects of Hemin on prevention and rescue of salt stress in rapeseed (Brassica napus L.) seedlings. BMC PLANT BIOLOGY 2023; 23:558. [PMID: 37957575 PMCID: PMC10644511 DOI: 10.1186/s12870-023-04595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Salt stress severely restricts rapeseed growth and productivity. Hemin can effectively alleviate salt stress in plants. However, the regulatory effect of Hemin on rapeseed in salt stress is unclear. Here, we analyzed the response and remediation mechanism of Hemin application to rapeseed before and after 0.6% (m salt: m soil) NaCl stress. Experiment using two Brassica napus (AACC, 2n = 38) rapeseed varieties Huayouza 158R (moderately salt-tolerant) and Huayouza 62 (strongly salt-tolerant). To explore the best optional ways to improve salt stress resistance in rapeseed. RESULTS Our findings revealed that exogenous application of Hemin enhanced morph-physiological traits of rapeseed and significantly attenuate the inhibition of NaCl stress. Compared to Hemin (SH) treatment, Hemin (HS) significantly improved seedlings root length, seedlings height, stem diameter and accumulated more dry matter biomass under NaCl stress. Moreover, Hemin (HS) significantly improved photosynthetic efficiency, activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and decreased electrolyte leakage (EL) and malondialdehyde (MDA) content, thus resulting in the alleviation of oxidative membrane damage. Hemin (HS) showed better performance than Hemin (SH) under NaCl stress. CONCLUSION Hemin could effectively mitigate the adverse impacts of salt stress by regulating the morph-physiological, photosynthetic and antioxidants traits of rapeseed. This study may provide a basis for Hemin to regulate cultivated rapeseed salt tolerance and explore a better way to alleviate salt stress.
Collapse
Affiliation(s)
- Hui-Min Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Guang-Sheng Zhou
- College of Plant Science & Technology of Hua Zhong Agricultural University, Wuhan, 430070, China.
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xu-Tong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Capolupo I, De Rose DU, Pascone R, Danhaive O, Orzalesi M. Defective Leukocyte β2 Integrin Expression and Reactive Oxygen Species Production in Neonates. CHILDREN 2022; 9:children9040494. [PMID: 35455538 PMCID: PMC9029815 DOI: 10.3390/children9040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Neonates are highly susceptible to bacterial infections, which represent a major source of mortality and morbidity in this age category. It is recognized that β2 integrins play a critical role in innate immunity by mediating leukocyte vascular adhesion, transmigration and bacterial phagocytosis. Therefore, we aimed to assess if the impaired immune functions seen in newborns may derive, in part, from a transient insufficient β2 integrin expression. In the present study we measured baseline lymphocyte function-associated antigen-1 (LFA-1 or CD11a/CD18), macrophage-1 antigen (MAC-1 or CD11b/CD18) and leukocyte integrin p150-95 (CD11c/CD18) expression on cord blood, and on the third day of life in a cohort of 35 healthy neonates, compared with a control group of 12 healthy adults. For any of the three β2 integrins, the expression on polymorphonuclear cells was significantly lower on cord blood than in adults and increased from birth to day 3. We also compared superoxide radical (SR) production in these neonates with 28 non-smoking adults. SR production in response to integrin stimulation by Zymosan was significantly lower at birth than in adults, and it decreased further in the third day of life. These findings suggest that innate immune impairment in newborns may be, in part, accounted for by a lower β2 integrin expression on phagocytes in the neonatal period, but also by a functional impairment of free radical production.
Collapse
Affiliation(s)
- Irma Capolupo
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy; (D.U.D.R.); (M.O.)
- Correspondence: ; Tel.: +39-06-68592427; Fax: +39-06-68593916
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy; (D.U.D.R.); (M.O.)
| | - Roberto Pascone
- Department of Pediatrics, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Olivier Danhaive
- Department of Neonatology, Cliniques Universitaires Saint Luc, 1200 Bruxelles, Belgium;
| | - Marcello Orzalesi
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy; (D.U.D.R.); (M.O.)
| |
Collapse
|
3
|
Haines DD, Tosaki A. Heme Degradation in Pathophysiology of and Countermeasures to Inflammation-Associated Disease. Int J Mol Sci 2020; 21:ijms21249698. [PMID: 33353225 PMCID: PMC7766613 DOI: 10.3390/ijms21249698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The class of tetrapyrrol "coordination complexes" called hemes are prosthetic group components of metalloproteins including hemoglobin, which provide functionality to these physiologically essential macromolecules by reversibly binding diatomic gasses, notably O2, which complexes to ferrous (reduced/Fe(II)) iron within the heme porphyrin ring of hemoglobin in a pH- and PCO2-dependent manner-thus allowing their transport and delivery to anatomic sites of their function. Here, pathologies associated with aberrant heme degradation are explored in the context of their underlying mechanisms and emerging medical countermeasures developed using heme oxygenase (HO), its major degradative enzyme and bioactive metabolites produced by HO activity. Tissue deposits of heme accumulate as a result of the removal of senescent or damaged erythrocytes from circulation by splenic macrophages, which destroy the cells and internal proteins, including hemoglobin, leaving free heme to accumulate, posing a significant toxicogenic challenge. In humans, HO uses NADPH as a reducing agent, along with molecular oxygen, to degrade heme into carbon monoxide (CO), free ferrous iron (FeII), which is sequestered by ferritin protein, and biliverdin, subsequently metabolized to bilirubin, a potent inhibitor of oxidative stress-mediated tissue damage. CO acts as a cellular messenger and augments vasodilation. Nevertheless, disease- or trauma-associated oxidative stressors sufficiently intense to overwhelm HO may trigger or exacerbate a wide range of diseases, including cardiovascular and neurologic syndromes. Here, strategies are described for counteracting the effects of aberrant heme degradation, with a particular focus on "bioflavonoids" as HO inducers, shown to cause amelioration of severe inflammatory diseases.
Collapse
Affiliation(s)
- Donald David Haines
- Advanced Biotherapeutics, London W2 1EB, UK;
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-255586
| |
Collapse
|
4
|
Ju C, Wen Y, Zhang L, Wang Q, Xue L, Shen J, Zhang C. Neoadjuvant Chemotherapy Based on Abraxane/Human Neutrophils Cytopharmaceuticals with Radiotherapy for Gastric Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804191. [PMID: 30549431 DOI: 10.1002/smll.201804191] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/18/2018] [Indexed: 05/18/2023]
Abstract
Gastric cancer remains one of the most lethal cancers with high incidence and mortality worldwide. The majority of gastric cancer patients are those who have first been diagnosed in advanced stage, in which the standard chemo-radiotherapy produces limited benefit along with severe general toxicity, thus the demand for improved therapeutic efficacy and decreased side effects drives the development of novel therapeutic strategies. Here, a neoadjuvant chemotherapy based on Abraxane/human neutrophils (NEs) cytopharmaceuticals with radiotherapy is presented for effective cancer treatment. Human NEs, the most abundant white blood cells in peripheral blood, are developed to carry Abraxane, the commercial albumin-bound paclitaxel nanoparticle, to form cytopharmaceuticals (Abraxane/NEs) which have been confirmed to maintain the intrinsic functions of human NEs. The modest radiation is applied not only to exert tumor disruption, but also to increase the release of inflammatory factors which guide the NEs homing to the tumoral sites. These amplified inflammatory factors at tumor sites excessively activate Abraxane/NEs to form neutrophil extracellular traps, along with a burst release of Abraxane to induce superior tumor suppression. This adjuvant chemo-radiotherapy based on cytopharmaceuticals may provide new opportunities for advanced cancer treatment, which reveals the huge clinical potential of human neutrophils as drug delivery vectors.
Collapse
Affiliation(s)
- Caoyun Ju
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yajing Wen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Luping Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qianqian Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
5
|
Chigaev A, Smagley Y, Sklar LA. Carbon monoxide down-regulates α4β1 integrin-specific ligand binding and cell adhesion: a possible mechanism for cell mobilization. BMC Immunol 2014; 15:52. [PMID: 25367365 PMCID: PMC4221689 DOI: 10.1186/s12865-014-0052-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 01/13/2023] Open
Abstract
Background Carbon monoxide (CO), a byproduct of heme degradation, is attracting growing attention from the scientific community. At physiological concentrations, CO plays a role as a signal messenger that regulates a number of physiological processes. CO releasing molecules are under evaluation in preclinical models for the management of inflammation, sepsis, ischemia/reperfusion injury, and organ transplantation. Because of our discovery that nitric oxide signaling actively down-regulates integrin affinity and cell adhesion, and the similarity between nitric oxide and CO-dependent signaling, we studied the effects of CO on integrin signaling and cell adhesion. Results We used a cell permeable CO releasing molecule (CORM-2) to elevate intracellular CO, and a fluorescent Very Late Antigen-4 (VLA-4, α4β1-integrin)-specific ligand to evaluate the integrin state in real-time on live cells. We show that the binding of the ligand can be rapidly down-modulated in resting cells and after inside-out activation through several Gαi-coupled receptors. Moreover, cell treatment with hemin, a natural source of CO, resulted in comparable VLA-4 ligand dissociation. Inhibition of VLA-4 ligand binding by CO had a dramatic effect on cell-cell interaction in a VLA-4/VCAM-1-dependent cell adhesion system. Conclusions We conclude that the CO signaling pathway can rapidly down-modulate binding of the VLA-4 -specific ligand. We propose that CO-regulated integrin deactivation provides a basis for modulation of immune cell adhesion as well as rapid cell mobilization, for example as shown for splenic monocytes in response to surgically induced ischemia of the myocardium.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and University of New Mexico Cancer Center, Albuquerque 87131, NM, USA.
| | | | | |
Collapse
|
6
|
Immunotherapy reduces allergen-mediated CD66b expression and myeloperoxidase levels on human neutrophils from allergic patients. PLoS One 2014; 9:e94558. [PMID: 24740105 PMCID: PMC3989194 DOI: 10.1371/journal.pone.0094558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/18/2014] [Indexed: 02/03/2023] Open
Abstract
CD66b is a member of the carcinoembryonic antigen family, which mediates the adhesion between neutrophils and to endothelial cells. Allergen-specific immunotherapy is widely used to treat allergic diseases, and the molecular mechanisms underlying this therapy are poorly understood. The present work was undertaken to analyze A) the in vitro effect of allergens and immunotherapy on cell-surface CD66b expression of neutrophils from patients with allergic asthma and rhinitis and B) the in vivo effect of immunotherapy on cell-surface CD66b expression of neutrophils from nasal lavage fluid during the spring season. Myeloperoxidase expression and activity was also analyzed in nasal lavage fluid as a general marker of neutrophil activation. Results CD66b cell-surface expression is upregulated in vitro in response to allergens, and significantly reduced by immunotherapy (p<0.001). Myeloperoxidase activity in nasal lavage fluid was also significantly reduced by immunotherapy, as were the neutrophil cell-surface expression of CD66b and myeloperoxidase (p<0.001). Interestingly, CD66b expression was higher in neutrophils from nasal lavage fluid than those from peripheral blood, and immunotherapy reduced the number of CD66+MPO+ cells in nasal lavage fluid. Thus, immunotherapy positive effects might, at least in part, be mediated by the negative regulation of the CD66b and myeloperoxidase activity in human neutrophils.
Collapse
|
7
|
Masini E, Vannacci A, Failli P, Mastroianni R, Giannini L, Vinci MC, Uliva C, Motterlini R, Mannaioni PF. A carbon monoxide‐releasing molecule (CORM‐3) abrogates polymorphonuclear granulocyte‐induced activation of endothelial cells and mast cells. FASEB J 2008; 22:3380-8. [DOI: 10.1096/fj.08-107110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emanuela Masini
- Department of Preclinical and Clinical PharmacologyUniversity of Florence Florence Italy
| | - Alfredo Vannacci
- Department of Preclinical and Clinical PharmacologyUniversity of Florence Florence Italy
| | - Paola Failli
- Department of Preclinical and Clinical PharmacologyUniversity of Florence Florence Italy
| | - Rosanna Mastroianni
- Department of Preclinical and Clinical PharmacologyUniversity of Florence Florence Italy
| | - Lucia Giannini
- Department of Preclinical and Clinical PharmacologyUniversity of Florence Florence Italy
| | - Maria Cristina Vinci
- Department of Preclinical and Clinical PharmacologyUniversity of Florence Florence Italy
| | - Caterina Uliva
- Department of Preclinical and Clinical PharmacologyUniversity of Florence Florence Italy
| | - Roberto Motterlini
- Vascular Biology Unit, Department of Surgical ResearchNorthwick Park Institute for Medical Research Harrow Middlesex UK
| | | |
Collapse
|
8
|
Yasui Nishii Y, Akagi M. [Possibility of heme oxygenase-1 as a target for therapy against allergic inflammation]. Nihon Yakurigaku Zasshi 2007; 130:257-61. [PMID: 17938508 DOI: 10.1254/fpj.130.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Kinhult J, Egesten A, Benson M, Uddman R, Cardell LO. Increased expression of surface activation markers on neutrophils following migration into the nasal lumen. Clin Exp Allergy 2003; 33:1141-6. [PMID: 12911790 DOI: 10.1046/j.1365-2222.2003.01682.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The sequence of events following the recruitment of a free-flowing neutrophil in the peripheral circulation, via adhesion, migration and release of mediators, to a neutrophil on the surface of the nasal epithelium is a co-ordinated process. Little is known about the state of neutrophil activation following this course of events. OBJECTIVES To investigate the expression of surface activation markers on neutrophils, reflecting activation during their recruitment to the nose, and to see whether the inflammatory process during allergic rhinitis influences this process. METHOD Nine healthy controls and 12 patients with grass pollen-induced intermittent allergic rhinitis were investigated during the peak of the pollen season. The expression of CD11b, CD66b and CD63 on the neutrophil cell surface, as a reflection of activation, was analysed using flow cytometry. Neutrophils were derived from peripheral blood and nasal lavage fluid. In addition, eosinophil cationic protein (ECP) and myeloperoxidase (MPO) as well as L-, P- and E-selectins in the nasal lavage fluid were analysed using RIA and ELISA, respectively. RESULTS A marked increase in the expression of all three CD markers on the neutrophil cell surface was noticed following migration from the bloodstream to the surface of the nasal mucosa. At the peak of the grass pollen season, the MPO levels increased, reflecting an increase in the total number of nasal fluid neutrophils. In parallel, the expression of CD11b was further augmented. The expression of the CDb11b was reduced on neutrophils remaining in the circulation. In addition, the level of L-selectin was reduced on neutrophils derived from the blood during allergic inflammation. CONCLUSION Neutrophils might become activated during their transfer from the blood to the surface of the nasal mucosa, but these changes may also be due to depletion of activated neutrophils in the blood via activated endothelial/epithelial adhesion and chemoattractant measures. The increased expression of surface activation markers during allergic rhinitis suggests roles for neutrophils in the inflammatory process.
Collapse
Affiliation(s)
- J Kinhult
- Laboratory for Clinical and Experimental Allergy Research, Department of Otorhinolaryngology Department of Medical Microbiology, Malmö University Hospital, Malmö, Sweden
| | | | | | | | | |
Collapse
|
10
|
Mayer RD, Wang X, Maines MD. Nitric oxide inhibitor N omega -nitro-l-arginine methyl ester potentiates induction of heme oxygenase-1 in kidney ischemia/reperfusion model: a novel mechanism for regulation of the oxygenase. J Pharmacol Exp Ther 2003; 306:43-50. [PMID: 12676888 DOI: 10.1124/jpet.102.048686] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological significance of the heme oxygenase (HO) system's response to stress reflects functions of its products-CO and bile pigments. CO is a messenger molecule, whereas bile pigments are antioxidants and modulators of cell signaling. Presently, an unexpected mechanism for sustained suprainduction of renal HO-1 following ischemia/reperfusion injury is described. Inhibition of nitric-oxide synthase (NOS) activity by Nomega-nitro-l-arginine methyl ester (l-NAME) at the resumption of reperfusion of rat kidney subjected to bilateral ischemia (30 min) was as effective as the most potent HO-1 inducer, the spin trap agent n-tert-butyl-alpha-phenyl nitrone (PBN), in causing sustained suprainduction of HO-1 mRNA. PBN forms stable radicals of oxygen and nitrogen. Twenty-four hours after reperfusion, HO-1 mRNA measured approximately 30-fold that of the control in the presence of l-NAME treatment; in its absence, the transcript increased to only approximately 5-fold. At 4 h in the presence or absence of the l-NAME HO-1, mRNA was increased by approximately 30-fold. The transcript was translated to active protein as indicated by Western blotting, immunohistochemistry, and activity analyses. l-NAME was not effective given 1 h after resumption of reperfusion. Suprainduction was restricted to the kidney and not detected in the heart and aorta; ferritin expression in the kidney was not effected. It is reasoned that in tissue directly insulted by ischemia/reperfusion, increased production of NO radicals promotes the loss of HO-1 transcript. Because the absence of NO radicals and presence of PBN had a similar effect on HO-1, we propose that suprainduction of the gene is mainly caused by O2 radicals formed on reperfusion. Inhibition of NOS is potentially useful for sustained induction of HO-1 in organs that will be subjected to oxidative-stress insult.
Collapse
Affiliation(s)
- Robert D Mayer
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
11
|
Andersson JA, Uddman R, Cardell LO. Hemin, a heme oxygenase substrate analog, both inhibits and enhances neutrophil random migration and chemotaxis. Allergy 2002; 57:1008-12. [PMID: 12358996 DOI: 10.1034/j.1398-9995.2002.23769.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Carbon monoxide (CO), is an endogenously produced gas, generated by the rate-limiting enzyme heme oxygenase (HO), present in man throughout the respiratory tract. CO can elicit important physiological responses like bronchial relaxation and vasodilation. Both HO expression and CO levels in the airways increase in response to hypoxic challenge and to a wide variety of inflammatory stimuli, such as intermittent allergic rhinitis, asthma and upper respiratory tract infections. A role for CO in airway regulation and inflammation has therefore been suggested. However, information about CO-induced effects on cells involved in airway inflammation is scarce. The present study was designed to investigate if the HO substrate analog hemin could affect neutrophil random migration, and N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) induced chemotaxis. METHODS Hemin was added to and incubated with whole blood and the effects of the anticipated CO production were then evaluated on isolated neutrophils using a chemotaxis chamber. RESULTS A biphasic dose-response curve emerged for both the neutrophil spontaneous random migration and the fMLP-induced chemotaxis. Low concentrations of hemin (10(-11) m to 10(-9) m) enhanced the migratory response, whereas higher concentrations (10(-7) m and 10(-5) m) inhibited migration. The inhibition induced by hemin on fMLP-induced migration was abolished after pre-treatment with Rp-8Br-cyclicGMPS, an inhibitor of cyclicGMP. CONCLUSIONS The present data indicate that endogenously produced CO can affect both spontaneous and stimulated neutrophil migration, partly via a cyclicGMP-related process, hence strengthening the idea of a role for CO in airway inflammation.
Collapse
Affiliation(s)
- J A Andersson
- Department of Otorhinolaryngology, Malmö University Hospital, Malmö 205 02, Sweden
| | | | | |
Collapse
|