1
|
Adegboyega O, Gayen Nee' Betal S, Urday P, Huang R, Bodycot K, Al-Kouatly HB, Solarin K, Chan JSY, Addya S, Boelig RC, Aghai ZH. DNA methylation patterns in umbilical cord blood from infants of methadone maintained opioid dependent mothers. Sci Rep 2024; 14:17298. [PMID: 39068260 PMCID: PMC11283475 DOI: 10.1038/s41598-024-66899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
Methadone maintenance treatment for opioid dependent mothers is standard of care. Infants of methadone maintained opioid dependent (MMOD) mothers have better outcomes compared to infants of opioid dependent mothers without treatment. However, when compared to non-exposed infants, infants of MMOD mothers are associated with worse outcomes. We conducted a pilot study to examine genome wide differential DNA methylation using cord blood samples from sixteen term and near-term infants of MMOD and opioid naïve mothers, excluding Infants with chorioamnionitis. A total of 152 differentially methylated loci were identified at a difference > + 2, < - 2 and p-value < 0.05. There were 90 hypermethylated loci (59 annotated genes) and 62 hypomethylated loci (38 annotated genes) observed. The hypermethylated and hypomethylated DNA changes involved multiple genes, pathways and networks that may explain some of the changes seen in infants of MMOD mothers. Top hypermethylated and hypomethylated genes involved areas of cell growth, neurodevelopment, vision and xenobiotic metabolism functions. Our data may explain the role of key pathways and genes relevant to neonatal outcomes seen from methadone exposure in pregnancy. Functional studies on the identified pathways and genes could lead to improved understanding of the mechanisms and identify areas for intervention.
Collapse
Affiliation(s)
- Oluwatobi Adegboyega
- Neonatology, Thomas Jefferson University, Attending Neonatologist, Nemours at TJU, Philadelphia, PA, USA
- Reilly Children's Hospital, Lehigh Valley Health Network, Allentown, USA
| | - Suhita Gayen Nee' Betal
- Neonatology, Thomas Jefferson University, Attending Neonatologist, Nemours at TJU, Philadelphia, PA, USA
| | - Pedro Urday
- Neonatology, Thomas Jefferson University, Attending Neonatologist, Nemours at TJU, Philadelphia, PA, USA
| | - Rachel Huang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Katherine Bodycot
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Huda B Al-Kouatly
- Division of Maternal Fetal Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Kolawole Solarin
- Neonatology, Thomas Jefferson University, Attending Neonatologist, Nemours at TJU, Philadelphia, PA, USA
| | - Joanna S Y Chan
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Sankar Addya
- Laboratory of Cancer Genomics, Thomas Jefferson University, Philadelphia, USA
| | - Rupsa C Boelig
- Division of Maternal Fetal Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Zubair H Aghai
- Neonatology, Thomas Jefferson University, Attending Neonatologist, Nemours at TJU, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Hitti-Malin RJ, Panneman DM, Corradi Z, Boonen EGM, Astuti G, Dhaenens CM, Stöhr H, Weber BHF, Sharon D, Banin E, Karali M, Banfi S, Ben-Yosef T, Glavač D, Farrar GJ, Ayuso C, Liskova P, Dudakova L, Vajter M, Ołdak M, Szaflik JP, Matynia A, Gorin MB, Kämpjärvi K, Bauwens M, De Baere E, Hoyng CB, Li CHZ, Klaver CCW, Inglehearn CF, Fujinami K, Rivolta C, Allikmets R, Zernant J, Lee W, Podhajcer OL, Fakin A, Sajovic J, AlTalbishi A, Valeina S, Taurina G, Vincent AL, Roberts L, Ramesar R, Sartor G, Luppi E, Downes SM, van den Born LI, McLaren TL, De Roach JN, Lamey TM, Thompson JA, Chen FK, Tracewska AM, Kamakari S, Sallum JMF, Bolz HJ, Kayserili H, Roosing S, Cremers FPM. Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes. Biomolecules 2024; 14:367. [PMID: 38540785 PMCID: PMC10967834 DOI: 10.3390/biom14030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.
Collapse
Affiliation(s)
- Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Daan M. Panneman
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Erica G. M. Boonen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Galuh Astuti
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Marianthi Karali
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, 80131 Naples, Italy
| | - Sandro Banfi
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Tamar Ben-Yosef
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - G. Jane Farrar
- The School of Genetics and Microbiology, The University of Dublin Trinity College, D02 VF25 Dublin, Ireland
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Marie Vajter
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Monika Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Jacek P. Szaflik
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, 03-709 Warsaw, Poland
| | - Anna Matynia
- College of Optometry, University of Houston, Houston, TX 77004, USA
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
- Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Kaoru Fujinami
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY 10027, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10027, USA
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Osvaldo L. Podhajcer
- Laboratorio de Terapia Molecular y Celular (Genocan), Fundación Instituto Leloir, CONICET, Buenos Aires 1405, Argentina
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alaa AlTalbishi
- St John of Jerusalem Eye Hospital Group, East Jerusalem 91198, Palestine
| | - Sandra Valeina
- Department of Ophthalmology, Riga Stradins University, LV-1007 Riga, Latvia
- Children’s Clinical University Hospital, LV-1004 Riga, Latvia
| | - Gita Taurina
- Children’s Clinical University Hospital, LV-1004 Riga, Latvia
| | - Andrea L. Vincent
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Grafton, Auckland 1023, New Zealand
- Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland 1142, New Zealand
| | - Lisa Roberts
- University of Cape Town/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Raj Ramesar
- University of Cape Town/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Giovanna Sartor
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Elena Luppi
- Department of Medical and Surgical Sciences, University of Bologna, 40127 Bologna, Italy
- Unit of Medical Genetics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford OX3 9DU, UK
| | | | - Terri L. McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - John N. De Roach
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Tina M. Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | | | - Smaragda Kamakari
- Ophthalmic Genetics Unit, OMMA Ophthalmological Institute of Athens, 115 25 Athens, Greece
| | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology and Visual Sciences, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
- Instituto de Genética Ocular, São Paulo 04552-050, SP, Brazil
| | - Hanno J. Bolz
- Institute of Human Genetics, University Hospital of Cologne, 50937 Cologne, Germany
| | - Hülya Kayserili
- Department of Medical Genetics, Koc University School of Medicine (KUSOM), 34450 Istanbul, Turkey
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
5
|
Schlegel DK, Glasauer SMK, Mateos JM, Barmettler G, Ziegler U, Neuhauss SCF. A New Zebrafish Model for CACNA2D4-Dysfunction. Invest Ophthalmol Vis Sci 2020; 60:5124-5135. [PMID: 31834350 DOI: 10.1167/iovs.19-26759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in CACNA2D4, encoding the α2δ4 subunit of retinal voltage-gated calcium channels (Cav), cause a rare type of retinal dysfunction in human, mainly affecting cone vision. Here, we investigate the role of CACNA2D4 in targeting of Cav, its influence on cone-mediated signal transmission, and the cellular and subcellular changes upon loss of α2δ4 by exploiting the advantages of the cone-dominant zebrafish as model system. Methods We identified two zebrafish CACNA2D4 paralogs (cacna2d4a and cacna2d4b), analyzed their expression by RNA in situ hybridization and introduced truncating frameshift mutations through CRISPR/Cas9-mediated mutagenesis. We analyzed retinal function and morphology of the single and double mutant lines by electroretinography, immunohistochemistry, light- and electron microscopy. Results Knockout of cacna2d4b reduces the expression of Cacna1fa, the pore-forming subunit of retinal Cav1.4, whereas loss of cacna2d4a did not. Only knockout of both paralogs impaired cone-mediated ERG b-wave amplitude. The number of "floating" ribbons is increased in double-KO, while retinal morphology and expression of postsynaptic mGluR6b remain largely unaffected. Both Cacna1fa and Ribeyeb show ectopic punctate expression in cacna2d4b-KO and double-KO photoreceptors. Conclusions We find that increasing the expression of Cav at the synaptic membrane is an evolutionarily conserved function of Cacna2d4b. Yet, since both paralogs participate in cone synaptic transmission, we propose partial subfunctionalization in zebrafish. Similar to human patients, our double KO zebrafish model shows mild cone dysfunction, which was not associated with signs of retinal degeneration. Therefore, cacna2d4-KO zebrafish is a suitable model to study the pathophysiological mechanisms underlying CACNA2D4 dysfunction in human.
Collapse
Affiliation(s)
- Domino K Schlegel
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| | - Stella M K Glasauer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - José M Mateos
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Gery Barmettler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|