1
|
Zimmer SE, Takeichi T, Conway DE, Kubo A, Suga Y, Akiyama M, Kowalczyk AP. Differential Pathomechanisms of Desmoglein 1 Transmembrane Domain Mutations in Skin Disease. J Invest Dermatol 2022; 142:323-332.e8. [PMID: 34352264 PMCID: PMC9109890 DOI: 10.1016/j.jid.2021.07.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
Dominant and recessive mutations in the desmosomal cadherin, desmoglein (DSG) 1, cause the skin diseases palmoplantar keratoderma (PPK) and severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, respectively. In this study, we compare two dominant missense mutations in the DSG1 transmembrane domain (TMD), G557R and G562R, causing PPK (DSG1PPK-TMD) and SAM syndrome (DSG1SAM-TMD), respectively, to determine the differing pathomechanisms of these mutants. Expressing the DSG1TMD mutants in a DSG-null background, we use cellular and biochemical assays to reveal the differences in the mechanistic behavior of each mutant. Super-resolution microscopy and functional assays showed a failure by both mutants to assemble desmosomes due to reduced membrane trafficking and lipid raft targeting. DSG1SAM-TMD maintained normal expression levels and turnover relative to wildtype DSG1, but DSG1PPK-TMD lacked stability, leading to increased turnover through lysosomal and proteasomal pathways and reduced expression levels. These results differentiate the underlying pathomechanisms of these disorders, suggesting that DSG1SAM-TMD acts dominant negatively, whereas DSG1PPK-TMD is a loss-of-function mutation causing the milder PPK disease phenotype. These mutants portray the importance of the DSG TMD in desmosome function and suggest that a greater understanding of the desmosomal cadherin TMDs will further our understanding of the role that desmosomes play in epidermal pathophysiology.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Suga
- Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew P Kowalczyk
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Department of Cellular & Molecular Physiology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA.
| |
Collapse
|
2
|
Ferguson A, Rattler K, Perone H, Dwivedi AK, Obeng-Gyasi E, Mena KD, Solo-Gabriele H. Soil-skin adherence measures from hand press trials in a Gulf study of exposures. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:158-169. [PMID: 32994540 DOI: 10.1038/s41370-020-00269-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Marine oil spills and the resulting environmental contamination is common along coastal areas; however, information is lacking about the safety of impacted beaches for public use, especially for the most vulnerable population: children. One route of exposure for children at oil impacted beaches is through contact with sands. The purpose of this study was to evaluate beach sand skin adherence for children under the age of seven. Each of 122 children participated in a hand press trial conducted at one of four different U.S. beaches (two in Miami, FL, and two in Galveston, TX USA). During the hand press trials, hand conditions of the children were randomized (dry, wet, or with sunscreen), and soil adherence (mass of sand per palmar surface area of the hand) and the maximum pressure applied (force applied per area of hand) was measured and calculated. Each child was instructed to press their hands on a soil laden tray for 5 s and pressure of contact was measured using a scale. Results (n = 98) showed that the average soil adherence for both palmar hands across the four beaches ranged from 0.200 to 234 mg/cm2 with an average of 35.7 mg/cm2, with boys (40.4 mg/cm2) showing slightly higher means than girls (31.7 mg/cm2), but these differences were not significant even after adjusting for age. Among the three conditions evaluated, the highest loading was measured for children with wet hands (mean 65.3 mg/cm2), followed by dry hands (mean 24.5 mg/cm2). Sunscreen hands (mean 23.2 mg/cm2) had the lowest loadings. The pressure of contact ranged from 0.180 to 1.69 psi and varied by age groups and by height and weight, where pressure of contact did not have a significant influence on soil adherence. The average adhered sand grain size and average ambient sand grain size both had a statistically significant impact on hand soil adherence. Overall results from this study can be utilized in exposure and risk assessment models to evaluate the possible health impacts from contaminants found in beach sands.
Collapse
Affiliation(s)
- Alesia Ferguson
- Department of Built Environment, North Carolina A&T, Greensboro, NC, 27411, USA.
| | - Kyra Rattler
- Psychology Department, University of Arkansas at Pine Bluff, Pine Bluff, AR, USA
| | - Hanna Perone
- University of Texas-Houston School of Public Health, Houston, TX, 77030, USA
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, 33146, USA
| | - Ashok Kumar Dwivedi
- Department of Built Environment, North Carolina A&T, Greensboro, NC, 27411, USA
| | | | - Kristina D Mena
- University of Texas-Houston School of Public Health, Houston, TX, 77030, USA
| | - Helena Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
3
|
Dev T, Mahajan VK, Sethuraman G. Hereditary Palmoplantar Keratoderma: A Practical Approach to the Diagnosis. Indian Dermatol Online J 2019; 10:365-379. [PMID: 31334055 PMCID: PMC6615398 DOI: 10.4103/idoj.idoj_367_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ridged skin of the palms and soles has several unique features: (i) presence of dermatoglyphics created by alternating ridges and grooves forming a unique pattern, (ii) presence of the highest density of eccrine sweat glands and absence of pilosebaceous units, and (iii) differential expression of keratins compared to the glabrous skin. These features explain the preferential localization of palmoplantar keratoderma (PPK) and several of its characteristic clinical features. PPK develops as a compensatory hyperproliferation of the epidermis and excessive production of stratum corneum in response to altered cornification of the palmoplantar skin due to mutations in the genes encoding several of the proteins involved in it. PPK can manifest as diffuse, focal, striate, or punctate forms per se or as a feature of several dermatological or systemic diseases. There is a wide genetic and phenotypic heterogeneity in hereditary PPK, due to which reaching an accurate diagnosis only on the basis of clinical features may be sometimes challenging for the clinicians in the absence of molecular studies. Nevertheless, recognizing the clinical patterns of keratoderma, extent of involvement, degree of mutilation, and associated appendageal and systemic involvement may help in delineating different forms. Molecular studies, despite high cost, are imperative for accurate classification, recognizing clinical patterns in resource poor settings is important for appropriate diagnosis, genetic counseling, and management. This review intends to develop a practical approach for clinical diagnosis of different types of hereditary PPK with reasonable accuracy.
Collapse
Affiliation(s)
- Tanvi Dev
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram K Mahajan
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra (Tanda), Himachal Pradesh, India
| | - Gomathy Sethuraman
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Lovgren ML, McAleer MA, Irvine AD, Wilson NJ, Tavadia S, Schwartz ME, Cole C, Sandilands A, Smith FJD, Zamiri M. Mutations in desmoglein 1 cause diverse inherited palmoplantar keratoderma phenotypes: implications for genetic screening. Br J Dermatol 2017; 176:1345-1350. [PMID: 27534273 PMCID: PMC5485079 DOI: 10.1111/bjd.14973] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 02/01/2023]
Abstract
The inherited palmoplantar keratodermas (PPKs) are a heterogeneous group of genodermatoses, characterized by thickening of the epidermis of the palms and soles. No classification system satisfactorily unites clinical presentation, pathology and molecular pathogenesis. There are four patterns of hyperkeratosis - striate, focal, diffuse and punctate. Mutations in the desmoglein 1 gene (DSG1), a transmembrane glycoprotein, have been reported primarily in striate, but also in focal and diffuse PPKs. We report seven unrelated pedigrees with dominantly inherited PPK owing to mutations in the DSG1 gene, with marked phenotypic variation. Genomic DNA from each family was isolated, and individual exons amplified by polymerase chain reaction. Sanger sequencing was employed to identify mutations. Mutation analysis identified novel mutations in five families (p.Tyr126Hisfs*2, p.Ser521Tyrfs*2, p.Trp3*, p.Asp591Phefs*9 and p.Met249Ilefs*6) with striate palmar involvement and varying focal or diffuse plantar disease, and the recurrent mutation c.76C>T, p.Arg26*, in two families with variable PPK patterns. We report one recurrent and five novel DSG1 mutations, causing varying patterns of PPK, highlighting the clinical heterogeneity arising from mutations in this gene.
Collapse
Affiliation(s)
- M-L Lovgren
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock, U.K
| | - M A McAleer
- Department of Dermatology, Our Lady's, Children's Hospital Crumlin, Dublin, Ireland.,National Children's Research Centre, Children's Hospital Crumlin, Dublin, Ireland
| | - A D Irvine
- Department of Dermatology, Our Lady's, Children's Hospital Crumlin, Dublin, Ireland.,National Children's Research Centre, Children's Hospital Crumlin, Dublin, Ireland.,Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - N J Wilson
- Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, U.K
| | - S Tavadia
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock, U.K
| | - M E Schwartz
- Pachyonychia Congenita Project, Salt Lake City, UT, U.S.A
| | - C Cole
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, U.K
| | - A Sandilands
- Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, U.K
| | - F J D Smith
- Dermatology and Genetic Medicine, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, U.K.,Pachyonychia Congenita Project, Salt Lake City, UT, U.S.A
| | - M Zamiri
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock, U.K.,Alan Lyell Centre for Dermatology, Queen Elizabeth University Hospital, Glasgow, U.K
| |
Collapse
|
5
|
Abstract
Desmosomes are intercellular junctions that contribute to cell-cell adhesion, signalling, development and differentiation in various tissues, including the skin. Composed of a network of transmembranous and intracellular plaque proteins, pathogenic autosomal dominant or recessive mutations have been reported in 10 different desmosomal genes, resulting in a spectrum of phenotypes variably affecting skin, hair and heart. This review summarizes the molecular pathology and phenotypes that predominantly affect the skin/hair. Recent desmosomal genodermatoses described include lethal congenital epidermolysis bullosa (plakoglobin), cardiomyopathy with alopecia and palmoplantar keratoderma (plakoglobin), hypotrichosis with scalp vesicles (desmocollin 3), and generalized peeling skin disease (corneodesmosin). Understanding the range of clinical phenotypes in combination with knowledge of the inherent desmosome gene mutation(s) is helpful in managing and counselling patients, as well as providing insight into the biological function of specific components of desmosomes in skin and other tissues.
Collapse
Affiliation(s)
- G Petrof
- St John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 9RT, UK
| | | | | |
Collapse
|
6
|
Mannan T, Jing S, Foroushania SH, Fortune F, Wan H. RNAi-mediated inhibition of the desmosomal cadherin (desmoglein 3) impairs epithelial cell proliferation. Cell Prolif 2011; 44:301-10. [PMID: 21702856 DOI: 10.1111/j.1365-2184.2011.00765.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Desmoglein 3 (Dsg3) is a desmosomal adhesion protein expressed in basal and immediate suprabasal layers of skin. Importance of Dsg3 in cell-cell adhesion and maintenance of tissue integrity is illustrated by findings of keratinocyte dissociation in the autoimmune disease, pemphigus vulgaris, where autoantibodies target Dsg3 on keratinocyte surfaces and cause Dsg3 depletion from desmosomes. However, recognition of possible participation of involvement of Dsg3 in cell proliferation remains controversial. Currently, available evidence suggests that Dsg3 may have both anti- and pro-proliferative roles in keratinocytes. The aim of this study was to use RNA interference (RNAi) strategy to investigate effects of silencing Dsg3 in cell-cell adhesion and cell proliferation in two cell lines, HaCaT and MDCK. MATERIALS AND METHODS Cells were transfected with siRNA, and knockdown of Dsg3 was assessed by western blotting, fluorescence-activated cell sorting and confocal microscopy. Cell-cell adhesion was analysed using the hanging drop/fragmentation assay, and cell proliferation by colony forming efficiency, BrdU incorporation, cell counts and organotypic culture. RESULTS Silencing Dsg3 caused defects in cell-cell adhesion and concomitant reduction in cell proliferation in both HaCaT and MDCK cells. CONCLUSION These findings suggest that Dsg3 depletion by RNAi reduces cell proliferation, which is likely to be secondary to a defect in cell-cell adhesion, an essential function required for cell differentiation and morphogenesis.
Collapse
Affiliation(s)
- T Mannan
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, UK
| | | | | | | | | |
Collapse
|
7
|
Alam S, Bowser BS, Conway MJ, Israr M, Tandon A, Meyers C. Adeno-associated virus type 2 infection activates caspase dependent and independent apoptosis in multiple breast cancer lines but not in normal mammary epithelial cells. Mol Cancer 2011; 10:97. [PMID: 21827643 PMCID: PMC3199901 DOI: 10.1186/1476-4598-10-97] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/09/2011] [Indexed: 01/28/2023] Open
Abstract
Background In normal cells proliferation and apoptosis are tightly regulated, whereas in tumor cells the balance is shifted in favor of increased proliferation and reduced apoptosis. Anticancer agents mediate tumor cell death via targeting multiple pathways of programmed cell death. We have reported that the non-pathogenic, tumor suppressive Adeno-Associated Virus Type 2 (AAV2) induces apoptosis in Human Papillomavirus (HPV) positive cervical cancer cells, but not in normal keratinocytes. In the current study, we examined the potential of AAV2 to inhibit proliferation of MCF-7 and MDA-MB-468 (both weakly invasive), as well as MDA-MB-231 (highly invasive) human breast cancer derived cell lines. As controls, we used normal human mammary epithelial cells (nHMECs) isolated from tissue biopsies of patients undergoing breast reduction surgery. Results AAV2 infected MCF-7 line underwent caspase-independent, and MDA-MB-468 and MDA-MB-231 cell lines underwent caspase-dependent apoptosis. Death of MDA-MB-468 cells was marked by caspase-9 activation, whereas death of MDA-MB-231 cells was marked by activation of both caspase-8 and caspase-9, and resembled a mixture of apoptotic and necrotic cell death. Cellular demise was correlated with the ability of AAV2 to productively infect and differentially express AAV2 non-structural proteins: Rep78, Rep68 and Rep40, dependent on the cell line. Cell death in the MCF-7 and MDA-MB-231 lines coincided with increased S phase entry, whereas the MDA-MB-468 cells increasingly entered into G2. AAV2 infection led to decreased cell viability which correlated with increased expression of proliferation markers c-Myc and Ki-67. In contrast, nHMECs that were infected with AAV2 failed to establish productive infection or undergo apoptosis. Conclusion AAV2 regulated enrichment of cell cycle check-point functions in G1/S, S and G2 phases could create a favorable environment for Rep protein expression. Inherent Rep associated endonuclease activity and AAV2 genomic hair-pin ends have the potential to induce a cellular DNA damage response, which could act in tandem with c-Myc regulated/sensitized apoptosis induction. In contrast, failure of AAV2 to productively infect nHMECs could be clinically advantageous. Identifying the molecular mechanisms of AAV2 targeted cell cycle regulation of death inducing signals could be harnessed for developing novel therapeutics for weakly invasive as well as aggressive breast cancer types.
Collapse
Affiliation(s)
- Samina Alam
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
8
|
Bizikova P, Linder KE, Olivry T. Immunomapping of desmosomal and nondesmosomal adhesion molecules in healthy canine footpad, haired skin and buccal mucosal epithelia: comparison with canine pemphigus foliaceus serum immunoglobulin G staining patterns. Vet Dermatol 2010; 22:132-42. [PMID: 20738839 DOI: 10.1111/j.1365-3164.2010.00924.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pemphigus foliaceus (PF) is the most common canine autoimmune skin disease. In contrast to human PF (hPF), desmoglein-1 is a minor autoantigen in the canine disease. The major autoantigen(s) of canine PF (cPF) remain(s) unknown, which limits the ability to perform mechanistic studies of lesion formation and the development of novel diagnostic and therapeutic strategies for this disease. The immunofluorescence patterns of selected desmosomal (desmoglein-1, desmoglein-3, desmocollin-1, desmocollin-3, desmoplakin-1/2, plakoglobin and plakophilin-1) and nondesmosomal adhesion proteins (E-cadherin, claudin-1, zona occludens-1 and occludin) in healthy canine footpad, haired skin and buccal mucosal epithelia were determined using hPF and pemphigus vulgaris sera and specific antibodies. The immunostaining patterns were then compared with that of indirect immunofluorescence staining with 66 cPF sera. Most cPF sera (58 of 66; 88%) exhibited positive staining along keratinocyte margins in the stratum spinosum and stratum granulosum of canine footpad. One serum contained autoantibodies binding solely to stratum granulosum keratinocytes. Concurrent intercellular fluorescence in the stratum basale was limited to seven of 66 cPF sera (11%). Only 12 of 66 cPF sera (18%) also exhibited positive IF staining of the buccal mucosa. This study confirms the immunological heterogeneity of cPF immunoglobulin G autoantibodies. Moreover, the major indirect immunofluorescence staining pattern and the inability of most cPF sera to label the buccal mucosa closely matched that of desmocollin-1. These observations warrant further investigation of desmocollin-1 as a potential major cPF autoantigen.
Collapse
Affiliation(s)
- Petra Bizikova
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
9
|
Abstract
Transmission electron microscopy (TEM) has long been the best available method for the diagnosis of epidermolysis bullosa. Today, TEM is largely superseded by immunofluorescence microscopy mapping, which is generally more available. This article discusses its continuing role in confirming or refining results obtained by other methods, or in establishing the diagnosis where other techniques have been unsuitable or have failed. It covers key steps for optimizing tissue preparation, features of analysis, recently classified epidermolysis bullosa disorders, and strengths and weaknesses of TEM.
Collapse
|
10
|
Exploring the Nature of Desmosomal Cadherin Associations in 3D. Dermatol Res Pract 2010; 2010:930401. [PMID: 20672011 PMCID: PMC2905946 DOI: 10.1155/2010/930401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/17/2010] [Accepted: 04/16/2010] [Indexed: 12/01/2022] Open
Abstract
Desmosomes are a complex assembly of protein molecules that mediate adhesion between adjacent cells. Desmosome composition is well established and spatial relationships between components have been identified. Intercellular cell-cell adhesion is created by the interaction of extracellular domains of desmosomal cadherins, namely, desmocollins and desmogleins. High-resolution methods have provided insight into the structural interactions between cadherins. However, there is a lack of understanding about the architecture of the intact desmosomes and the physical principles behind their adhesive strength are unclear. Electron Tomography (ET) studies have offered three-dimensional visual data of desmosomal cadherin associations at molecular resolution. This review discusses the merits of two cadherin association models represented using ET. We discuss the possible role of sample preparation on the structural differences seen between models and the possibility of adaptive changes in the structure as a direct consequence of mechanical stress and stratification.
Collapse
|
11
|
Huang CC, Lee TJ, Chang PH, Lee YS, Chuang CC, Jhang YJ, Chen YW, Chen CW, Tsai CN. Desmoglein 3 is overexpressed in inverted papilloma and squamous cell carcinoma of sinonasal cavity. Laryngoscope 2010; 120:26-9. [PMID: 19688857 DOI: 10.1002/lary.20151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS We sought to investigate the role of desmoglein 3 in pathogenesis of sinonasal inverted papilloma (IP) and its malignant transformation. METHODS Fifteen subjects with sinonasal IP and 15 subjects of normal sphenoid sinus mucosa were enrolled. Each specimen was divided into two portions: one for mRNA expression analysis by real-time polymerase chain reaction, and the other for detection of targeted proteins by immunohistochemistry analysis. In addition, another 10 cases of IP with squamous cell carcinoma (SCC) were added for immunohistochemistry analysis. RESULTS The mRNA expression level of desmoglein 3 was significantly higher in IP tissues than in the normal sinus mucosa (P < .001). In immunohistochemistry study, desmoglein 3 was detected in plasma membrane areas of IP and IP with SCC tissues, but no obvious expression was found in normal sinus mucosa (total score; both P < .001). Positive desmoglein 3 staining was strongly present in nearly all malignant transformation areas of IP with SCC cases (90%), but only in scattered areas of some cases of IP (53%) (total score; P < .001). CONCLUSIONS Desmoglein 3 was overexpressed in IP and IP with SCC, and the overexpression was correlated with malignant transformation of IP. It may provide valuable insight into the pathobiology of this disease, and can potentially provide a venue to predict malignant transformation in sinonasal IP.
Collapse
Affiliation(s)
- Chi-Che Huang
- Department of Otolaryngoloy-Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zamiri M, Smith F, Campbell L, Tetley L, Eady R, Hodgins M, McLean W, Munro C. Mutation inDSG1causing autosomal dominant striate palmoplantar keratoderma. Br J Dermatol 2009; 161:692-4. [DOI: 10.1111/j.1365-2133.2009.09316.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Bolling MC, Mekkes JR, Goldschmidt WFM, van Noesel CJM, Jonkman MF, Pas HH. Acquired palmoplantar keratoderma and immunobullous disease associated with antibodies to desmocollin 3. Br J Dermatol 2007; 157:168-73. [PMID: 17578440 DOI: 10.1111/j.1365-2133.2007.07920.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present a case of immunobullous disease with an impressive acquired palmoplantar keratoderma (PPK) and unique antigenicity. The palms of the patient showed hyperkeratotic ridges with a tripe pattern that decreased with the amelioration of the immunobullous condition. The histopathology of perilesional skin (blister) demonstrated eosinophilic spongiosis and suprabasal blistering as in pemphigus vulgaris. In palmar skin, acantholysis, intraepidermal pustules, papillomatosis and marked hyperkeratosis were observed. Direct and indirect immunofluorescence displayed intraepidermal intercellular IgG staining as well as linear IgG staining along the epidermal basement membrane zone. Immunochemical assays revealed IgG antibodies to the desmosomal protein desmocollin 3 and to the hemidesmosomal proteins BP230 and LAD-1. Affinity-purified antidesmocollin 3 serum IgG bound to monkey oesophagus in the typical pemphigus pattern. Desmocollins are transmembrane proteins of the desmosome. Desmosome diseases may cause hereditary PPK. In our patient with acquired PPK, we hypothesize that the antibodies to desmocollin 3 were, apart from their role in eliciting the pemphigus-like blistering disease, also implicated in the pathogenesis of the PPK.
Collapse
Affiliation(s)
- M C Bolling
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Wan H, South AP, Hart IR. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference. Exp Cell Res 2007; 313:2336-44. [PMID: 17475244 DOI: 10.1016/j.yexcr.2007.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/19/2006] [Accepted: 01/14/2007] [Indexed: 12/12/2022]
Abstract
The intercellular adhesive junction desmosomes are essential for the maintenance of tissue structure and integrity in skin. Desmoplakin (Dp) is a major obligate plaque protein which plays a fundamental role in anchoring intermediate filaments to desmosomal cadherins. Evidence from hereditary human disease caused by mutations in the gene encoding Dp, e.g. Dp haploinsufficiency, suggests that alterations in Dp expression result not only in the disruption of tissue structure and integrity but also could evoke changes in keratinocyte proliferation. We have used transient RNA interference (RNAi) to downregulate Dp specifically in HaCaT keratinocytes. We showed that this Dp downregulation also caused reduced expression of several other desmosomal proteins. Increased cell proliferation and enhanced G(1)-to-S-phase entry in the cell cycle, as monitored by colonial cellular density and BrdU incorporation, were seen in Dp RNAi-treated cells. These proliferative changes were associated with elevated phospho-ERK1/2 and phospho-Akt levels. Furthermore, this increase in phospho-ERK/1/2 and phospho-Akt levels was sustained in Dp RNAi-treated cells at confluence whereas in control cells there was a significant reduction in phosphorylation of ERK1/2. This study indicates that Dp may participate in the regulation of keratinocyte cell proliferation by, in part at least, regulating cell cycle progression.
Collapse
Affiliation(s)
- Hong Wan
- Centre for Tumour Biology, Institute of Cancer and CR-UK Clinical Centre, Barts and The London, Queen Mary's School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London, UK.
| | | | | |
Collapse
|
15
|
Wan H, Yuan M, Simpson C, Allen K, Gavins FNE, Ikram MS, Basu S, Baksh N, O'Toole EA, Hart IR. Stem/progenitor cell-like properties of desmoglein 3dim cells in primary and immortalized keratinocyte lines. Stem Cells 2007; 25:1286-97. [PMID: 17255524 DOI: 10.1634/stemcells.2006-0304] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We showed previously that primary keratinocytes selected for low desmoglein 3 (Dsg3) expression levels exhibited increased colony-forming efficiency and heightened proliferative potential relative to cells with higher Dsg3 expression levels, characteristics consistent with a more "stem/progenitor cell-like" phenotype. Here, we have confirmed that Dsg3(dim) cells derived from cultured primary human adult keratinocytes have comparability with alpha(6)(bri)/CD71(dim) stem cells in terms of colony-forming efficiency. Moreover, these Dsg3(dim) cells exhibit increased reconstituting ability in in vitro organotypic culture on de-epidermalized dermis (DED); they are small, actively cycling cells, and they express elevated levels of various p63 isoforms. In parallel, using the two immortalized keratinocyte cell lines HaCaT and NTERT, we obtained essentially similar though occasionally different findings. Thus, reduced colony-forming efficiency by Dsg3(bri) cells consistently was observed in both cell lines even though the cell cycle profile and levels of p63 isoforms in the bri and dim populations differed between these two cell lines. Dsg3(dim) cells from both immortalized lines produced thicker and better ordered hierarchical structural organization of reconstituted epidermis relative to Dsg3(bri) and sorted control cells. Dsg3(dim) HaCaT cells also show sebocyte-like differentiation in the basal compartment of skin reconstituted after a 4-week organotypic culture. No differences in percentages of side population cells (also a putative marker of stem cells) were detected between Dsg3(dim) and Dsg3(bri) populations. Taken together our data indicate that Dsg3(dim) populations from primary human adult keratinocytes and long-term established keratinocyte lines possess certain stem/progenitor cell-like properties, although the side population characteristic is not one of these features. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Hong Wan
- Tumour Biology Laboratory, Institute of Cancer and CR-UK Clinical Centre, Queen Mary's School of Medicine and Dentistry, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kottke MD, Delva E, Kowalczyk AP. The desmosome: cell science lessons from human diseases. J Cell Sci 2006; 119:797-806. [PMID: 16495480 DOI: 10.1242/jcs.02888] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human skin diseases have revealed fundamental mechanisms by which cytoskeletal proteins contribute to tissue architecture and function. In particular, the analysis of epidermal blistering disorders and the role of keratin gene mutations in these diseases has led to significant increases in our understanding of intermediate filament biology. The major cell-surface attachment site for intermediate filament networks is the desmosome, an adhesive intercellular junction prominent in the epidermis and the heart. During the past decade, substantial progress has been made in understanding the molecular basis of a variety of epidermal autoimmune diseases, skin fragility syndromes, and disorders that involve a combination of heart and skin defects caused by perturbations in desmosome structure and function. These human diseases reveal key roles for desmosomes in maintaining tissue integrity, but also suggest functions for desmosomal components in signal transduction pathways and epidermal organization.
Collapse
Affiliation(s)
- Margaret D Kottke
- Department of Dermatology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
17
|
Milingou M, Wood P, Masouyé I, McLean WH, Borradori L. Focal palmoplantar keratoderma caused by an autosomal dominant inherited mutation in the desmoglein 1 gene. Dermatology 2006; 212:117-22. [PMID: 16484817 DOI: 10.1159/000090651] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/09/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Palmoplantar keratodermas (PPK) encompass a large genetically heterogeneous group of diseases associated with hyperkeratosis of the soles and/or palms that occur either isolated or in association with other cutaneous and extracutaneous manifestations. Pathogenic mutations in the desmoglein 1 gene (DSG1) have recently been identified in a subset of patients with the striate type of PPK. OBSERVATION We have identified a patient with a focal non-striated form of PPK associated with discrete troubles of keratinisation at sites exposed to mechanical trauma, such as the knees, ankles or finger knuckles, and with mild nail dystrophy. Genetic analyses disclosed a novel dominantly inherited heterozygous single base insertion in exon 3 of DSG1, 121insT, leading to a premature termination codon. The mutation was also present in the father and in a sister. CONCLUSION Our observation extends the spectrum of clinical features associated with genetic defects in DSG1 and provides further evidence that perturbation of desmoglein 1 expression has a critical impact on the integrity of tissues experiencing strong mechanical stress.
Collapse
Affiliation(s)
- M Milingou
- Clinic of Dermatology, University Medical Hospital, Rue Micheli-du-Crest 24, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Bergman R, Sprecher E. Histopathological and ultrastructural study of ectodermal dysplasia/skin fragility syndrome. Am J Dermatopathol 2005; 27:333-8. [PMID: 16121056 DOI: 10.1097/01.dad.0000157451.46657.a6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ectodermal dysplasia/skin fragility syndrome (EDSFS) (MIM604536) is a newly described autosomal recessive disorder characterized by skin fragility and blistering, palmoplantar keratoderma, abnormal hair growth, nail dystrophy, and occasionally defective sweating. It results from mutations in the PKP1 gene encoding plakophilin 1 (PKP1), which is an important component of stratifying epithelial desmosomes and a nuclear component of many cell types. Our study was performed to further characterize the histopathology of EDSFS in different cutaneous sites with a special emphasis on the hypotrichosis and keratoderma. A total of 4 biopsies were obtained from 2 EDSFS female patients, aged 9 days to 4 years. The biopsies were taken from the blistering skin of the leg and trunk, the hyperkeratotic skin of the sole, and the hypotrichotic scalp. The observed histopathologic features included: widened intercellular spaces, suprabasal intraepidermal clefts and blisters with acantholytic keratinocytes, detachments of the upper epidermal layers due to disadhesion, varying degrees of dyskeratosis that were much more pronounced in the plantar hyperkeratotic skin, and increased number of catagen-telogen hair follicles. The electron-microscopic observations attributed the disadhesion and acantholysis to reduced numbers of small hypoplastic desmosomes, and the dyskeratosis to the detachment of intracellular keratin filaments from the desmosomes with perinuclear condensation, which might also underlie the plantar keratoderma. The hair follicle findings suggest disturbance in the hair cycle, which might be attributed to disturbed nuclear PKP1 function or result from aberrant desmosomal signaling.
Collapse
Affiliation(s)
- Reuven Bergman
- The Department of Dermatology, Rambam Medical Center, Technion-Israel, Institute of Technology, Haifa.
| | | |
Collapse
|
19
|
Abstract
The palmoplantar skin is a highly specialized tissue which is able to resist mechanical trauma and other physical stress. In recent years the more descriptive classification of keratodermas has switched to an exact molecular genetic view where gene functions are considered. Palmoplantar keratodermas can be separated in the following functional subgroups: disturbed gene fuctions in structural proteins (keratins), cornified envelope (loricrin, transglutaminase), cohesion (plakophilin, desmoplakin, desmoglein1), cell-to-cell communication (connexins), and transmembrane signal transduction (cathepsin C). This review intends to emphasize the typical clinical aspects and symptom complexes associated with palmoplantar keratodermas which enable the astute dermatologist to make a clinical diagnosis. In addition the molecular genetic knowledge on the topic is given which is necessary to confirm the clinical diagnosis.
Collapse
MESH Headings
- Biopsy, Needle
- Connexins/genetics
- Desmosomes/genetics
- Female
- Genetic Predisposition to Disease
- Humans
- Immunohistochemistry
- Incidence
- Keratins/genetics
- Keratoderma, Palmoplantar/diagnosis
- Keratoderma, Palmoplantar/epidemiology
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar, Diffuse/diagnosis
- Keratoderma, Palmoplantar, Diffuse/epidemiology
- Keratoderma, Palmoplantar, Diffuse/genetics
- Male
- Prognosis
- Risk Assessment
- Severity of Illness Index
- Sex Distribution
Collapse
Affiliation(s)
- Peter H Itin
- Department of Dermatology, University of Basel, 4031 Basel, Switzerland.
| | | |
Collapse
|
20
|
Wan H, Stone MG, Simpson C, Reynolds LE, Marshall JF, Hart IR, Hodivala-Dilke KM, Eady RAJ. Desmosomal proteins, including desmoglein 3, serve as novel negative markers for epidermal stem cell-containing population of keratinocytes. J Cell Sci 2003; 116:4239-48. [PMID: 12953062 DOI: 10.1242/jcs.00701] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
No single method has been universally adopted for identifying and isolating epidermal stem/progenitor cells, and the emergence of new markers of stem cell populations is worth exploring. Here we report, for the first time, that clusters of basal keratinocytes at the tips of the rete ridges in human palm, previously recognised as a major repository of stem cells, had very low levels of desmoplakin protein and mRNA expression, compared with cells at the sides of the ridges or above the dermal papillae. We found that in populations of palm keratinocytes, selected by their ability to adhere rapidly to type IV collagen, there were significantly reduced levels of desmoplakin and other major desmosome proteins. We then showed that a low desmoglein 3 (Dsg3) expression on the cell surface could be used to enrich for a cell population with high clonogenecity, colony forming efficiency and enhanced proliferative potential, but with a low ability to form the abortive clones, compared with populations with a higher Dsg3 expression. Moreover, stringent sorting of populations showing both beta1 integrin-bright and Dsg3-dull expression enabled even further enrichment of a population containing the putative epidermal stem cells. These findings provide the basis for a new strategy for epidermal stem/progenitor cell enrichment, and encourage further study of the role of desmosomes in stem cell biology.
Collapse
Affiliation(s)
- Hong Wan
- Department of Cell and Molecular Pathology, St John's Institute of Dermatology, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
South AP, Wan H, Stone MG, Dopping-Hepenstal PJC, Purkis PE, Marshall JF, Leigh IM, Eady RAJ, Hart IR, McGrath JA. Lack of plakophilin 1 increases keratinocyte migration and reduces desmosome stability. J Cell Sci 2003; 116:3303-14. [PMID: 12840072 DOI: 10.1242/jcs.00636] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ablation of the desmosomal plaque component plakophilin 1 underlies the autosomal recessive genodermatosis, skin fragility-ectodermal dysplasia syndrome (OMIM 604536). Skin from affected patients is thickened with increased scale, and there is loss of adhesion between adjacent keratinocytes, which exhibit few small, poorly formed desmosomes. To investigate further the influence of plakophilin 1 on keratinocyte adhesion and desmosome morphology, we compared plakophilin 1-deficient keratinocytes (vector controls) with those expressing recombinant plakophilin 1 introduced by retroviral transduction. We found that plakophilin 1 increases desmosomal protein content within the cell rather than enhancing transcriptional levels of desmosomal genes. Re-expression of plakophilin 1 in null cells retards cell migration but does not alter keratinocyte cell growth. Confluent sheets of plakophilin 1-deficient keratinocytes display fewer calcium-independent desmosomes than do plakophilin 1-deficient keratinocytes expressing recombinant plakophilin 1 or keratinocytes expressing endogenous plakophilin 1. In addition electron microscopy studies show that re-expression of plakophilin 1 affects desmosome size and number. Collectively, these results demonstrate that restoration of plakophilin 1 function in our culture system influences the transition of desmosomes from a calcium-dependent to a calcium-independent state and this correlates with altered keratinocyte migration in response to wounding. Thus, plakophilin 1 has a key role in increasing desmosomal protein content, in desmosome assembly, and in regulating cell migration.
Collapse
Affiliation(s)
- Andrew P South
- Department of Cell and Molecular Pathology, St John's Institute of Dermatology, Guy's, King's and St Thomas' School of Medicine, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McMillan JR, Haftek M, Akiyama M, South AP, Perrot H, McGrath JA, Eady RAJ, Shimizu H. Alterations in desmosome size and number coincide with the loss of keratinocyte cohesion in skin with homozygous and heterozygous defects in the desmosomal protein plakophilin 1. J Invest Dermatol 2003; 121:96-103. [PMID: 12839569 DOI: 10.1046/j.1523-1747.2003.12324.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recessive mutations in the desmosomal plaque protein plakophilin 1 (PkP1) underlie ectodermal dysplasia/skin fragility syndrome (MIM 604536). We undertook an immunohistochemical and quantitative electron microscopic examination of suprabasal desmosomes from 4 skin samples from 3 PkP1 deficient patients, an unaffected carrier with a PKP1 heterozygous acceptor splice site mutation and 5 healthy control subjects. Desmosomal plaque size (>50 desmosomes per individual) and frequency (>20 high power fields, HPF) were assessed. Compared with controls, desmosomes were reduced dramatically both in size (49%) and frequency (61%) in the lower suprabasal layers (LSB) in PkP1 null patients (P<0.01). In the LSB compartment of the heterozygous carrier, corresponding reductions were 37% and 20%, respectively (P<0.01). Surprisingly, the PkP1 null patient's upper suprabasal layer, (USB), desmosome size was larger (59%, P<0.01) than the control value, and showed increased desmoglein 1 and PkP2 USB staining. The USB desmosome frequency in PKP1 null patients was similar to the LSB compartment (but reduced by 43% compared to USB controls). The carrier showed no difference in the USB desmosome size and frequency compared with the controls (P>0.05). The PKP1 null patients showed poorly developed inner and outer desmosomal plaques. Thus, both the patients and unaffected carrier showed reductions in the LSB desmosome size and number; despite only PkP1 null patients exhibiting any phenotype. These findings attest to the molecular recruiting and stabilizing roles of PkP1 in desmosome formation, particularly in the LSB compartment.
Collapse
Affiliation(s)
- James R McMillan
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|