1
|
Serala K, Bai J, Prince S. Pyrvinium Pamoate Alone and With Gemcitabine Exhibits Anti-Pancreatic Cancer Activity in 2D and 3D Cell Culture Models. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE 2024; 28:e70222. [PMID: 39632282 PMCID: PMC11617115 DOI: 10.1111/jcmm.70222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Pancreatic cancer is an intractable disease with the worst prognosis of all common cancers. The treatment regimens currently used for pancreatic cancer do not significantly impact patient survival, and therefore, effective treatment strategies are urgently needed. Drug repurposing, which identifies new indications for existing and approved drugs, has proven to be a desirable approach to anti-cancer drug discovery. Indeed, the antihelminthic drug, pyrvinium pamoate, has shown promise as an anti-pancreatic cancer drug. However, the only mechanism of action ascribed to this has been its ability to inhibit mitochondrial function. This study showed, using pancreatic cancer 2D cell cultures and 3D spheroids, that pyrvinium pamoate exhibited short- and long-term cytotoxicity, inhibited epithelial-to-mesenchymal transition and cell invasion and migration. Mechanistically, pyrvinium pamoate induced DNA damage, inhibited stemness markers and the PI3K/AKT cell survival pathway, triggered an S-phase cell cycle arrest and induced apoptotic and autophagic cell death. Importantly, pyrvinium pamoate acted synergistically with the first-line drug, gemcitabine, in 2D and 3D pancreatic cancer cell culture models. This study provides evidence that pyrvinium pamoate is effective as a single agent and in combination with gemcitabine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Karabo Serala
- Department of Human BiologyUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Jinming Bai
- Department of Human BiologyUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Sharon Prince
- Department of Human BiologyUniversity of Cape Town, ObservatoryCape TownSouth Africa
| |
Collapse
|
2
|
Louphrasitthiphol P, Loffreda A, Pogenberg V, Picaud S, Schepsky A, Friedrichsen H, Zeng Z, Lashgari A, Thomas B, Patton EE, Wilmanns M, Filippakopoulos P, Lambert JP, Steingrímsson E, Mazza D, Goding CR. Acetylation reprograms MITF target selectivity and residence time. NATURE COMMUNICATIONS 2023; 14:6051. [PMID: 37770430 PMCID: PMC10539308 DOI: 10.1038/s41467-023-41793-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
The ability of transcription factors to discriminate between different classes of binding sites associated with specific biological functions underpins effective gene regulation in development and homeostasis. How this is achieved is poorly understood. The microphthalmia-associated transcription factor MITF is a lineage-survival oncogene that plays a crucial role in melanocyte development and melanoma. MITF suppresses invasion, reprograms metabolism and promotes both proliferation and differentiation. How MITF distinguishes between differentiation and proliferation-associated targets is unknown. Here we show that compared to many transcription factors MITF exhibits a very long residence time which is reduced by p300/CBP-mediated MITF acetylation at K206. While K206 acetylation also decreases genome-wide MITF DNA-binding affinity, it preferentially directs DNA binding away from differentiation-associated CATGTG motifs toward CACGTG elements. The results reveal an acetylation-mediated switch that suppresses differentiation and provides a mechanistic explanation of why a human K206Q MITF mutation is associated with Waardenburg syndrome.
Collapse
Affiliation(s)
- Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Alessia Loffreda
- Experimental Imaging Center, Ospedale San Raffaele, Milano, Italy
| | - Vivian Pogenberg
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- Institute of Biochemistry and Signal Transduction, University Hamburg Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Alexander Schepsky
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hans Friedrichsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Zhiqiang Zeng
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit & Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Anahita Lashgari
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, Canada; Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC, Canada
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn Pathology School, University of Oxford, Oxford, UK
| | - E Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit & Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- University Hamburg Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec, Canada; Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC, Canada
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Davide Mazza
- Experimental Imaging Center, Ospedale San Raffaele, Milano, Italy
- Università Vita-Salulte San Raffaele, Milano, Italy
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
3
|
Damerell V, Ambele MA, Salisbury S, Neumann-Mufweba A, Durandt C, Pepper MS, Prince S. The c-Myc/TBX3 Axis Promotes Cellular Transformation of Sarcoma-Initiating Cells. FRONTIERS IN ONCOLOGY 2022; 11:801691. [PMID: 35145908 PMCID: PMC8821881 DOI: 10.3389/fonc.2021.801691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
Sarcomas are highly aggressive cancers of mesenchymal origin whose clinical management is highly complex. This is partly due to a lack of understanding of the molecular mechanisms underpinning the transformation of mesenchymal stromal/stem cells (MSCs) which are presumed to be the sarcoma-initiating cells. c-Myc is amplified/overexpressed in a range of sarcomas where it has an established oncogenic role and there is evidence that it contributes to the malignant transformation of MSCs. T-box transcription factor 3 (TBX3) is upregulated by c-Myc in a host of sarcoma subtypes where it promotes proliferation, tumor formation, migration, and invasion. This study investigated whether TBX3 is a c-Myc target in human MSCs (hMSCs) and whether overexpressing TBX3 in hMSCs can phenocopy c-Myc overexpression to promote malignant transformation. Using siRNA, qRT-PCR, luciferase reporter and chromatin-immunoprecipitation assays, we show that c-Myc binds and directly activates TBX3 transcription in hMSCs at a conserved E-box motif. When hMSCs were engineered to stably overexpress TBX3 using lentiviral gene transfer and the resulting cells characterised in 2D and 3D, the overexpression of TBX3 was shown to promote self-renewal, bypass senescence, and enhance proliferation which corresponded with increased levels of cell cycle progression markers (cyclin A, cyclin B1, CDK2) and downregulation of the p14ARF/MDM2/p53 tumor suppressor pathway. Furthermore, TBX3 promoted the migratory and invasive ability of hMSCs which associated with increased levels of markers of migration (Vimentin, SLUG, SNAIL, TWIST1) and invasion (MMP2, MMP9). Transcriptomic analysis revealed that genes upregulated upon TBX3 overexpression overlapped with c-myc targets, were involved in cell cycle progression, and were associated with sarcomagenesis. Together, the data described indicate that the c-Myc/TBX3 oncogenic molecular pathway may be a key mechanism that transforms hMSCs into sarcomas.
Collapse
Affiliation(s)
- Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melvin Anyasi Ambele
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Shanel Salisbury
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexis Neumann-Mufweba
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Chrisna Durandt
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- *Correspondence: Sharon Prince,
| |
Collapse
|
4
|
McNeal AS, Belote RL, Zeng H, Urquijo M, Barker K, Torres R, Curtin M, Shain AH, Andtbacka RHI, Holmen S, Lum DH, McCalmont TH, VanBrocklin MW, Grossman D, Wei ML, Lang UE, Judson-Torres RL. BRAF V600E induces reversible mitotic arrest in human melanocytes via microrna-mediated suppression of AURKB. ELIFE 2021; 10:e70385. [PMID: 34812139 PMCID: PMC8610417 DOI: 10.7554/elife.70385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.
Collapse
Affiliation(s)
- Andrew S McNeal
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Hanlin Zeng
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | | | - Rodrigo Torres
- University of California, San FranciscoSan FranciscoUnited States
| | | | - A Hunter Shain
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert HI Andtbacka
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Sheri Holmen
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - David H Lum
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | - Matt W VanBrocklin
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Douglas Grossman
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Maria L Wei
- University of California, San FranciscoSan FranciscoUnited States
| | - Ursula E Lang
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert L Judson-Torres
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| |
Collapse
|
5
|
Yin C, Zhu B, Li X, Goding CR, Cui R. A Reply to ''Evidence that STK19 Is Not an NRAS-Dependent Melanoma Driver". CELL 2020; 181:1406-1409.e2. [PMID: 32531246 DOI: 10.1016/j.cell.2020.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Chengqian Yin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Bo Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xin Li
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Rutao Cui
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
6
|
The c-Myc/AKT1/TBX3 Axis Is Important to Target in the Treatment of Embryonal Rhabdomyosarcoma. CANCERS 2020; 12:cancers12020501. [PMID: 32098189 PMCID: PMC7072582 DOI: 10.3390/cancers12020501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Rhabdomyosarcoma is a highly aggressive malignant cancer that arises from skeletal muscle progenitor cells and is the third most common solid tumour in children. Despite significant advances, rhabdomyosarcoma still presents a therapeutic challenge, and while targeted therapy has shown promise, there are limited options because the molecular drivers of rhabdomyosarcoma are poorly understood. We previously reported that the T-box transcription factor 3 (TBX3), which has been identified as a druggable target in many cancers, is overexpressed in rhabdomyosarcoma patient samples and cell lines. To identify new molecular therapeutic targets to treat rhabdomyosarcoma, this study investigates the potential oncogenic role(s) for TBX3 and the factors responsible for upregulating it in this cancer. To this end, rhabdomyosarcoma cell culture models in which TBX3 was either stably knocked down or overexpressed were established and the impact on key hallmarks of cancer were examined using growth curves, soft agar and scratch motility assays, as well as tumour-forming ability in nude mice. Our data show that TBX3 promotes substrate-dependent and -independent proliferation, migration and tumour formation. We further reveal that TBX3 is upregulated by c-Myc transcriptionally and AKT1 post-translationally. This study identifies c-Myc/AKT1/TBX3 as an important axis that could be targeted for the treatment of rhabdomyosarcoma.
Collapse
|
7
|
GSK-3β-Targeting Fisetin Promotes Melanogenesis in B16F10 Melanoma Cells and Zebrafish Larvae through β-Catenin Activation. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2020; 21:ijms21010312. [PMID: 31906440 PMCID: PMC6982351 DOI: 10.3390/ijms21010312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023]
Abstract
Fisetin is found in many fruits and plants such as grapes and onions, and exerts anti-inflammatory, anti-proliferative, and anticancer activity. However, whether fisetin regulates melanogenesis has been rarely studied. Therefore, we evaluated the effects of fisetin on melanogenesis in B16F10 melanoma cell and zebrafish larvae. The current study revealed that fisetin slightly suppressed in vitro mushroom tyrosinase activity; however, molecular docking data showed that fisetin did not directly bind to mushroom tyrosinase. Unexpectedly, fisetin significantly increased intracellular and extracellular melanin production in B16F10 melanoma cells regardless of the presence or absence of α-melanocyte stimulating hormone (α-MSH). We also found that the expression of melanogenesis-related genes such as tyrosinase and microphthalmia-associated transcription factor (MITF), were highly increased 48 h after fisetin treatment. Pigmentation of zebrafish larvae by fisetin treatment also increased at the concentrations up to 200 µM and then slightly decreased at 400 µM, with no alteration in the heart rates. Molecular docking data also revealed that fisetin binds to glycogen synthase kinase-3β (GSK-3β). Therefore, we evaluated whether fisetin negatively regulated GSK-3β, which subsequently activates β-catenin, resulting in melanogenesis. As expected, fisetin increased the expression of β-catenin, which was subsequently translocated into the nucleus. In the functional assay, FH535, a Wnt/β-catenin inhibitor, significantly inhibited fisetin-mediated melanogenesis in zebrafish larvae. Our data suggested that fisetin inhibits GSK-3β, which activates β-catenin, resulting in melanogenesis through the revitalization of MITF and tyrosinase.
Collapse
|
8
|
Olinski LE, Lin EM, Oancea E. Illuminating insights into opsin 3 function in the skin. ADVANCES IN BIOLOGICAL REGULATION 2020; 75:100668. [PMID: 31653550 PMCID: PMC7059126 DOI: 10.1016/j.jbior.2019.100668] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Because sunlight is essential for human survival, we have developed complex mechanisms for detecting and responding to light stimuli. The eyes and skin are major organs for sensing light and express several light-sensitive opsin receptors. These opsins mediate cellular responses to spectrally-distinct wavelengths of visible and ultraviolet light. How the eyes mediate visual phototransduction is well understood, but less is known about how the skin detects light. Both human and murine skin express a wide array of opsins, with one of the most highly expressed being the functionally elusive opsin 3 (OPN3). In this review we explore light reception, opsin expression and signaling in skin cells; we compile data elucidating potential functions for human OPN3 in skin, with emphasis on recent studies investigating OPN3 regulation of melanin within epidermal melanocytes.
Collapse
Affiliation(s)
- Lauren E Olinski
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, 02912, USA.
| | - Erica M Lin
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA.
| |
Collapse
|
9
|
Hwang E, Lee TH, Lee WJ, Shim WS, Yeo EJ, Kim S, Kim SY. A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels. PIGMENT CELL & MELANOMA RESEARCH 2016; 29:81-91. [PMID: 26459162 DOI: 10.1111/pcmr.12430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
Piper amides have a characteristic, unsaturated amide group and exhibit diverse biological activities, including proliferation and differentiation of melanocytes, although the molecular mechanisms underlying its antimelanogenesis effect remain unknown. We screened a selected chemical library of newly synthesized Piper amide derivatives and identified (E)-3-(4-(tert-butyl)phenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (NED-180) as one of the most potent compounds in suppressing melanogenesis. In murine melan-a melanocytes, NED-180 downregulated the expression of melanogenic regulatory proteins including tyrosinase, Tyrp1, Dct, and MITF. PI3K/Akt-dependent phosphorylation of GSK3β by NED-180 decreases MITF phosphorylation and inhibits melanogenesis without any effects on cytotoxicity and proliferation. Furthermore, topical application of NED-180 significantly ameliorated UVB-induced skin hyperpigmentation in guinea pigs. Interestingly, data obtained using calcium imaging techniques suggested that NED-180 reduced the TPA-induced activation of TRPM1 (melastatin), which could explain the NED-180-induced inhibition of melanogenesis. All things taken together, NED-180 triggers activation of multiple pathways, such as PI3K and ERK, and inhibits TRPM1/TRPV1, leading to inhibition of melanogenesis.
Collapse
Affiliation(s)
- Eunson Hwang
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University, Yongin, Korea
| | - Taek Hwan Lee
- College of Pharmacy, Yonsei University, Incheon, Korea
| | - Wook-Joo Lee
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon, Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon, Korea.,Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea.,Gachon Medical Research Institute, Gil Medical Center, Incheon, Korea
| |
Collapse
|
10
|
12-O-tetradecanoylphorbol-13-acetate activates hair follicle melanocytes for hair pigmentation via Wnt/β-catenin signaling. CELL AND TISSUE RESEARCH 2016; 366:329-340. [DOI: 10.1007/s00441-016-2450-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
11
|
Willmer T, Hare S, Peres J, Prince S. The T-box transcription factor TBX3 drives proliferation by direct repression of the p21(WAF1) cyclin-dependent kinase inhibitor. CELL DIVISION 2016; 11:6. [PMID: 27110270 PMCID: PMC4840944 DOI: 10.1186/s13008-016-0019-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND TBX3, a member of the T-box family of transcription factors, is essential in development and has emerged as an important player in the oncogenic process. TBX3 is overexpressed in several cancers and has been shown to contribute directly to tumour formation, migration and invasion. However, little is known about the molecular basis for its role in development and oncogenesis because there is a paucity of information regarding its target genes. The cyclin-dependent kinase inhibitor p21(WAF1) plays a pivotal role in a myriad of processes including cell cycle arrest, senescence and apoptosis and here we provide a detailed mechanism to show that it is a direct and biologically relevant target of TBX3. RESULTS Using a combination of luciferase reporter gene assays and in vitro and in vivo binding assays we show that TBX3 directly represses the p21(WAF1) promoter by binding a T-element close to its initiator. Furthermore, we show that the TBX3 DNA binding domain is required for the transcriptional repression of p21(WAF1) and that pseudo-phosphorylation of a serine proline motif (S190) located within this domain may play an important role in regulating this ability. Importantly, we demonstrate using knockdown and overexpression experiments that p21(WAF1) repression by TBX3 is biologically significant and required for TBX3-induced cell proliferation of chondrosarcoma cells. CONCLUSIONS Results from this study provide a detailed mechanism of how TBX3 transcriptionally represses p21(WAF1) which adds to our understanding of how it may contribute to oncogenesis.
Collapse
Affiliation(s)
- Tarryn Willmer
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Shannagh Hare
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
12
|
Moore AR, Ceraudo E, Sher JJ, Guan Y, Shoushtari AN, Chang MT, Zhang JQ, Walczak EG, Kazmi MA, Taylor BS, Huber T, Chi P, Sakmar TP, Chen Y. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. NATURE GENETICS 2016; 48:675-80. [PMID: 27089179 DOI: 10.1038/ng.3549] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/21/2016] [Indexed: 12/16/2022]
Abstract
Uveal melanomas are molecularly distinct from cutaneous melanomas and lack mutations in BRAF, NRAS, KIT, and NF1. Instead, they are characterized by activating mutations in GNAQ and GNA11, two highly homologous α subunits of Gαq/11 heterotrimeric G proteins, and in PLCB4 (phospholipase C β4), the downstream effector of Gαq signaling. We analyzed genomics data from 136 uveal melanoma samples and found a recurrent mutation in CYSLTR2 (cysteinyl leukotriene receptor 2) encoding a p.Leu129Gln substitution in 4 of 9 samples that lacked mutations in GNAQ, GNA11, and PLCB4 but in 0 of 127 samples that harbored mutations in these genes. The Leu129Gln CysLT2R mutant protein constitutively activates endogenous Gαq and is unresponsive to stimulation by leukotriene. Expression of Leu129Gln CysLT2R in melanocytes enforces expression of a melanocyte-lineage signature, drives phorbol ester-independent growth in vitro, and promotes tumorigenesis in vivo. Our findings implicate CYSLTR2 as a uveal melanoma oncogene and highlight the critical role of Gαq signaling in uveal melanoma pathogenesis.
Collapse
Affiliation(s)
- Amanda R Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, New York, USA
| | - Jessica J Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Youxin Guan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexander N Shoushtari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Matthew T Chang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Jenny Q Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Edward G Walczak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Manija A Kazmi
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, New York, USA
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, New York, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, New York, USA.,Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
13
|
The T-box transcription factor 3 is a promising biomarker and a key regulator of the oncogenic phenotype of a diverse range of sarcoma subtypes. ONCOGENESIS 2016; 5:e199. [PMID: 26900951 PMCID: PMC5154352 DOI: 10.1038/oncsis.2016.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/15/2022]
Abstract
Sarcomas represent a complex group of malignant neoplasms of mesenchymal origin and their heterogeneity poses a serious diagnostic and therapeutic challenge. There is therefore a need to elucidate the molecular mechanisms underpinning the pathogenesis of the more than 70 distinguishable sarcoma subtypes. The transcription factor TBX3, a critical developmental regulator, is overexpressed in several cancers of epithelial origin where it contributes to tumorigenesis by different molecular mechanisms. However, the status and role of TBX3 in sarcomas have not been reported. Here we show that a diverse subset of soft tissue and bone sarcoma cell lines and patient-derived sarcoma tissues express high levels of TBX3. We further explore the significance of this overexpression using a small interferring RNA approach and demonstrate that TBX3 promotes the migratory ability of chondrosarcoma, rhabdomyosarcoma and liposarcoma cells but inhibits fibrosarcoma cell migration. This suggested that TBX3 may play a key role in the development of different sarcoma subtypes by functioning as either an oncoprotein or as a brake to prevent tumour progression. To further explore this, TBX3 knockdown and overexpression cell culture models were established using chondrosarcoma and fibrosarcoma cells as representatives of each scenario, and the resulting cells were characterized with regard to key features of tumorigenesis. Results from in vitro and in vivo assays reveal that, while TBX3 promotes substrate-dependent and -independent cell proliferation, migration and tumour formation in chondrosarcoma cells, it discourages fibrosarcoma formation. Our findings provide novel evidence linking TBX3 to cancers of mesenchymal origin. Furthermore, we show that TBX3 may be a biomarker for the diagnosis of histologically dynamic sarcoma subtypes and that it impacts directly on their oncogenic phenotype. Indeed, we reveal that TBX3 may exhibit oncogene or tumour suppressor activity in sarcomas, which suggests that its role in cancer progression may rely on cellular context.
Collapse
|
14
|
SCF/c-kit signaling is required in 12-O-tetradecanoylphorbol-13-acetate-induced migration and differentiation of hair follicle melanocytes for epidermal pigmentation. CELL AND TISSUE RESEARCH 2015; 360:333-46. [DOI: 10.1007/s00441-014-2101-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
|
15
|
Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. NATURE COMMUNICATIONS 2014; 5:5807. [PMID: 25510211 PMCID: PMC4335710 DOI: 10.1038/ncomms6807] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
Direct reprogramming provides a fundamentally new approach for the generation of patient-specific cells. Here, by screening a pool of candidate transcription factors, we identify that a combination of three factors, MITF, SOX10 and PAX3, directly converts mouse and human fibroblasts to functional melanocytes. Induced melanocytes (iMels) activate melanocyte-specific networks, express components of pigment production and delivery system, and produce melanosomes. Human iMels properly integrate into the dermal-epidermal junction, and produce and deliver melanin pigment to surrounding keratinocytes in a 3D organotypic skin reconstruct. Human iMels generate pigmented epidermis and hair follicles in skin reconstitution assays in vivo. The generation of iMels has important implications for studies of melanocyte lineage commitment, pigmentation disorders and cell replacement therapies.
Collapse
|
16
|
Li J, Ballim D, Rodriguez M, Cui R, Goding CR, Teng H, Prince S. The anti-proliferative function of the TGF-β1 signaling pathway involves the repression of the oncogenic TBX2 by its homologue TBX3. JOURNAL OF BIOLOGICAL CHEMISTRY 2014; 289:35633-43. [PMID: 25371204 DOI: 10.1074/jbc.m114.596411] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A growing body of work has shown that the highly homologous T-box transcription factors TBX2 and TBX3 play critical but distinct roles in embryonic development and cancer progression. For example, TBX2 and TBX3 are up-regulated in several cancers and recent evidence suggests that whereas TBX2 functions as a pro-proliferative factor, TBX3 inhibits cell proliferation but promotes cancer cell migration and invasion. While the molecular mechanisms regulating these functions of TBX2 and TBX3 are poorly understood we recently reported that the TGF-β1 signaling pathway up-regulates TBX3 expression to mediate, in part, its well described anti-proliferative and pro-migratory roles. The TBX3 targets responsible for these functions were however not identified. Here we reveal for the first time that the TGF-β1 signaling pathway represses TBX2 transcriptionally and we provide a detailed mechanism to show that this is mediated by TBX3. Furthermore, we implicate the down-regulation of TBX2 in the anti-proliferative function of the TGF-β1-TBX3 axis. These findings have important implications for our understanding of the regulation of TBX2 and TBX3 and shed light on the mechanisms involved in the anti-proliferative and pro-migratory roles of TGF-β1.
Collapse
Affiliation(s)
- Jarod Li
- From the Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Deeya Ballim
- From the Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mercedes Rodriguez
- Ludwig Institute for Cancer Research, Oxford University, Headington, Oxford OX3 7DQ, United Kingdom, and
| | - Rutao Cui
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Oxford University, Headington, Oxford OX3 7DQ, United Kingdom, and
| | - Huajian Teng
- From the Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- From the Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa,
| |
Collapse
|
17
|
Kinikoglu B, Kong Y, Liao EC. Characterization of cultured multipotent zebrafish neural crest cells. EXPERIMENTAL BIOLOGY AND MEDICINE 2013; 239:159-68. [PMID: 24326414 DOI: 10.1177/1535370213513997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neural crest is a unique cell population associated with vertebrate evolution. Neural crest cells (NCCs) are characterized by their multipotent and migratory potentials. While zebrafish is a powerful genetic model organism, the isolation and culture of zebrafish NCCs would provide a useful adjunct to fully interrogate the genetic networks that regulate NCC development. Here we report for the first time the isolation, in vitro culture, and characterization of NCCs from zebrafish embryos. NCCs were isolated from transgenic sox10:egfp embryos using fluorescence activated cell sorting and cultured in complex culture medium without feeder layers. NCC multilineage differentiation was determined by immunocytochemistry and real-time qPCR, cell migration was assessed by wound healing assay, and the proliferation index was calculated by immunostaining against the mitosis marker phospho-histone H3. Cultured NCCs expressed major neural crest lineage markers such as sox10, sox9a, hnk1, p75, dlx2a, and pax3, and the pluripotency markers c-myc and klf4. We showed that the cultured NCCs can be differentiated into multiple neural crest lineages, contributing to neurons, glial cells, smooth muscle cells, melanocytes, and chondrocytes. We applied the NCC in vitro model to study the effect of retinoic acid on NCC development. We showed that retinoic acid had a profound effect on NCC morphology and differentiation, significantly inhibited proliferation and enhanced cell migration. The availability of high numbers of NCCs and reproducible functional assays offers new opportunities for mechanistic studies of neural crest development, in genetic and chemical biology applications.
Collapse
Affiliation(s)
- Beste Kinikoglu
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
18
|
Ballim RD, Mendelsohn C, Papaioannou VE, Prince S. The ulnar-mammary syndrome gene, Tbx3, is a direct target of the retinoic acid signaling pathway, which regulates its expression during mouse limb development. MOLECULAR BIOLOGY OF THE CELL 2012; 23:2362-72. [PMID: 22535523 PMCID: PMC3374754 DOI: 10.1091/mbc.e11-09-0790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TBX3, a member of the T-box transcription factor gene family, is a transcriptional repressor that is required for the development of the heart, limbs, and mammary glands. Mutations in TBX3 that result in reduced functional protein lead to ulnar-mammary syndrome, a developmental disorder characterized by limb, mammary gland, tooth, and genital abnormalities. Increased levels of TBX3 have been shown to contribute to the oncogenic process, and TBX3 is overexpressed in several cancers, including breast cancer, liver cancer, and melanoma. Despite its important role in development and postnatal life, little is known about the signaling pathways that modulate TBX3 expression. Here we show, using in vitro and in vivo assays, that retinoic acid (RA) activates endogenous TBX3 expression, which is mediated by an RA-receptor complex directly binding and activating the TBX3 promoter, and we provide evidence that this regulation may be functionally relevant in mouse embryonic limb development. Our data identify TBX3 as a direct target of the RA signaling pathway and extend our understanding of the role and regulation of TBX3 in limb development.
Collapse
Affiliation(s)
- Reyna Deeya Ballim
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | | | | | | |
Collapse
|
19
|
Peres J, Davis E, Mowla S, Bennett DC, Li JA, Wansleben S, Prince S. The Highly Homologous T-Box Transcription Factors, TBX2 and TBX3, Have Distinct Roles in the Oncogenic Process. GENES & CANCER 2011; 1:272-82. [PMID: 21779450 DOI: 10.1177/1947601910365160] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The T-box transcription factors TBX2 and TBX3 are overexpressed in several cancers and are able to bypass senescence by repressing ARF and p21(WAF1/CIP1/SDII). Although these studies suggest that they may both contribute to the oncogenic process by repressing common targets, whether they have redundant or distinct roles in cancers where they are both overexpressed remains to be elucidated. Importantly, when Tbx2 function is inhibited in melanoma cells lacking Tbx3, the cells senesce, but whether this is possible in melanoma cells overexpressing both proteins is not known. An understanding of this issue may have important implications for the design of an effective pro-senescence therapy. In this study, the authors used a sh-RNA approach to knock down TBX2 and TBX3 individually in 2 human melanoma cell lines that overexpress both these factors and then examined their specific involvement in the oncogenic process. They demonstrate, using in vitro and in vivo cell proliferation, as well as colony- and tumor-forming ability and cell motility assays, that TBX2 and TBX3 have distinct roles in melanoma progression. In the tested lines, although TBX2 could promote proliferation and transformation and was required by primary melanoma cells for immortality, TBX3 was required for tumor formation and cell migration. These findings were reproducible in a human breast cancer cell line, which confirms that TBX2 and TBX3, although highly homologous, do not have redundant roles in the transformation process of cancers where they are both overexpressed. These results have important implications for the development of new cancer treatments and in particular for melanoma, which is a highly aggressive and intractable cancer.
Collapse
Affiliation(s)
- Jade Peres
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
20
|
Pinon A, Limami Y, Micallef L, Cook-Moreau J, Liagre B, Delage C, Duval RE, Simon A. A novel form of melanoma apoptosis resistance: melanogenesis up-regulation in apoptotic B16-F0 cells delays ursolic acid-triggered cell death. EXPERIMENTAL CELL RESEARCH 2011; 317:1669-76. [PMID: 21565187 DOI: 10.1016/j.yexcr.2011.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/25/2022]
Abstract
Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. The resistance mechanisms are complex and melanoma cells may have diverse possibilities for regulating apoptosis to generate apoptotic deficiencies. In this study, we investigated the relationship between melanogenesis and resistance to apoptosis induced by ursolic acid, a natural chemopreventive agent, in B16-F0 melanoma cells. We demonstrated that cells undergoing apoptosis are able to delay their own death. It appeared that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were clearly implicated in an apoptosis resistance mechanism; while TRP-2, a well known mediator of melanoma resistance to cell death, was repressed. Our results confirm the difficulty of treating melanomas, since, even undergoing apoptosis, cells are nevertheless able to trigger a resistance mechanism to delay death.
Collapse
Affiliation(s)
- Aline Pinon
- Institut GEIST, EA 4021 "Biomolécules et thérapies anti-tumorales", Université de Limoges, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kormos B, Belso N, Bebes A, Szabad G, Bacsa S, Széll M, Kemény L, Bata-Csörgo Z. In vitro dedifferentiation of melanocytes from adult epidermis. PLOS ONE 2011; 6:e17197. [PMID: 21383848 PMCID: PMC3044174 DOI: 10.1371/journal.pone.0017197] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/23/2011] [Indexed: 12/02/2022]
Abstract
In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation.
Collapse
Affiliation(s)
- Bernadett Kormos
- Dermatological Research Group of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nelms BL, Labosky PA. Transcriptional Control of Neural Crest Development. ACTA ACUSTICA UNITED WITH ACUSTICA 2010. [DOI: 10.4199/c00010ed1v01y201003deb001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? CELL RESEARCH 2008; 18:1163-76. [PMID: 19002157 DOI: 10.1038/cr.2008.303] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human neurocristopathies include a number of syndromes, tumors, and dysmorphologies of neural crest (NC) stem cell derivatives. In recent years, many white spotting genes have been associated with hypopigmentary disorders and deafness in neurocristopathies resulting from NC stem cell-derived melanocyte deficiency during development. These include PAX3, SOX10, MITF, SNAI2, EDNRB, EDN3, KIT, and KITL. Recent studies have revealed surprising new insights into a central role of MITF in the complex network of interacting genes in melanocyte development. In this perspective, we provide an overview of some of the current findings and explore complex functional roles of these genes during NC stem cell-derived melanocyte development.
Collapse
Affiliation(s)
- Ling Hou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of China Ministry of Health, Eye Hospital, Wenzhou Medical College, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| | | |
Collapse
|
24
|
Hu DN. Methodology for evaluation of melanin content and production of pigment cells in vitro. PHOTOCHEMISTRY AND PHOTOBIOLOGY 2008; 84:645-9. [PMID: 18435617 DOI: 10.1111/j.1751-1097.2007.00228.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanin has a photo-screening, a biophysical/biochemical and a cosmetic effect. Melanin content of cultured pigmented cells can be measured by spectrophotometry and expressed either as melanin content per cell or melanin content per culture (area). Melanin production can be calculated from melanin content and cell number at the beginning and at the end of a culture using various formulas and expressed as melanin production per cell per day or melanin production per culture per day. Melanin content or production per cell have been used widely to compare melanin content in various cell lines or to compare the melanin content during different stages in the culture (e.g. growing stage and senescent stage). For the evaluation of changes in melanin content and production in a given pigment cell line after treatment with a special chemical, physical or biological stimulator or inhibitor, different parameters used for the evaluation of experimental data can lead to conflicting results. Melanin content per area is determined by melanin content per cell and the number of cells in this area. The biological and cosmetic effects of melanin in vivo are determined mainly by melanin content per area, not melanin content per cell. For example, if melanin content per cell is the same, but the number of cells in a given area is increased after the treatment, then the melanin content per area is also increased. Under this circumstance, the color of skin turns darker and the total antioxidant activity provided by melanin in this area is increased even though the melanin content per cell measured remains the same; therefore, melanin content or production per culture is more important than melanin content or production per cell under this circumstance.
Collapse
Affiliation(s)
- Dan-Ning Hu
- Tissue Culture Center, Department of Pathology, The New York Eye and Ear Infirmary and New York Medical College, New York, NY, USA.
| |
Collapse
|
25
|
Davis E, Teng H, Bilican B, Parker MI, Liu B, Carriera S, Goding CR, Prince S. Ectopic Tbx2 expression results in polyploidy and cisplatin resistance. ONCOGENE 2007; 27:976-84. [PMID: 17700536 DOI: 10.1038/sj.onc.1210701] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
T-box factors play critical roles in embryonic development and have been implicated in cell cycle regulation and cancer. For example, Tbx2 can suppress senescence through a mechanism involving the repression of the cyclin-dependent kinase inhibitors, p19(ARF) and p21(WAF1/CIP1/SDII), and the Tbx2 gene is deregulated in melanoma, breast and pancreatic cancers. In this study, several transformed human lung fibroblast cell lines were shown to downregulate Tbx2. To further investigate the role of Tbx2 in oncogenesis we therefore stably reexpressed Tbx2 in one such cell line. Compared to their parental cells, the resulting Tbx2-expressing cells are larger, with binucleate and lobular nuclei containing double the number of chromosomes. Moreover, these cells had an increase in frequency of several features of genomic instability such as chromosome missegregation, chromosomal rearrangements and polyploidy. While grossly abnormal, these cells still divide and give rise to cells that are resistant to the chemotherapeutic drug cisplatin. Furthermore, this is shown to be neither species nor cell type dependent, as ectopically expressing Tbx2 in a murine melanoma cell line also induce mitotic defects and polyploidy. These results have important implications for our understanding of the role of Tbx2 in tumorigenesis because polyploidy frequently precedes aneuploidy, which is associated with high malignancy and poor prognosis.
Collapse
Affiliation(s)
- E Davis
- Division of Cell Biology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Province, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Schwahn DJ, Timchenko NA, Shibahara S, Medrano EE. Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. ACTA ACUSTICA UNITED WITH ACUSTICA 2005; 18:203-13. [PMID: 15892717 DOI: 10.1111/j.1600-0749.2005.00229.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Senescent cells are known to display altered gene expression of differentiation-associated genes. We have previously demonstrated that the melanocyte transcriptional regulator microphthalmia-associated protein (MITF) is down-regulated in senescent melanocytes. Since virtually nothing is known regarding the differentiated function of senescent melanocytes, we analyzed the transcriptional regulation of Dopachrome tautomerase (DCT), a member of the tyrosinase gene family, in proliferating and in senescent human melanocytes. Computational analysis of the region containing the M-box that includes the MITF CATGTG binding motif demonstrated that this sequence overlaps with the estrogen receptor alpha (ER-alpha), USF-1, TFE-3, Isl-1 and AP-1 binding elements. Electrophoresis gel-shift analysis using an oligonucleotide containing MITF and ERE elements identified MITF and ER-alpha complexes in proliferating melanocytes, whereas only ER-alpha complexes were detected in senescent cells. Importantly, a promoter-reporter analysis demonstrated that the coactivator p300/CBP switched MITF from a repressor to an activator of DCT transcription. p300/CBP was also required by ER-alpha and MITF to induce high, synergistic activation of the DCT promoter. We have also found that transcription of the DCT gene is differentially regulated by major melanocyte mitogens. In contrast to the activating effect of cAMP inducers, 12-O-tetradecanoylphorbolacetate (TPA) was a potent repressor of DCT transcription, suggesting that this gene can be differentially regulated by multiple environmental signals and promoter context. In support of this conclusion, trichostatin A, a histone deacetylase inhibitor, counteracted the TPA-mediated repression, and restored high levels of DCT protein in cultured melanocytes. We conclude that senescent melanocytes display dramatic changes in the expression of differentiation-related proteins; such changes may in turn result in altered melanocyte function and survival to environmental stresses.
Collapse
Affiliation(s)
- Denise J Schwahn
- Departmentsof Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
27
|
Lee JY, Kang WH. Effect of cyclosporin A on melanogenesis in cultured human melanocytes. PIGMENT CELL RESEARCH 2003; 16:504-8. [PMID: 12950728 DOI: 10.1034/j.1600-0749.2003.00081.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cyclosporin A (CsA) is a widely used immunosuppressant. Reports on the effect of CsA on hyperpigmentation in patients appear inconsistent, and the effect of CsA on skin pigment cells (melanocytes) in vitro is unknown. We examined the effect of CsA on human melanocyte proliferation and melanogenesis in vitro. Melanocyte proliferation was dose-dependently inhibited by 0.1-10 microM CsA, with no effect on cell viability. Melanocytes incubated with 10 microM CsA for 6 days showed decreased pigmentation and tyrosinase activity. Western blot analysis using an anti-tyrosinase antibody revealed that CsA (0.1-10 microM) decreased tyrosinase protein levels in a dose-dependent manner. Northern blot analysis showed similar effects on tyrosinase mRNA levels. These effects of CsA on melanogenesis in vitro are not consistent with suggestions that systemic CsA therapy causes patient skin hyperpigmentation.
Collapse
Affiliation(s)
- Ji Yeoun Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | | |
Collapse
|
28
|
Domenzain C, Docampo MJ, Serra M, Miquel L, Bassols A. Differential expression of versican isoforms is a component of the human melanoma cell differentiation process. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1642:107-14. [PMID: 12972299 DOI: 10.1016/s0167-4889(03)00104-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Versican is a large chondroitin sulfate proteoglycan produced by human melanoma cell lines and malignant melanocytic lesions. In the present work, we have analyzed the expression of versican spliced variants V0, V1, V2 and V3 in human melanoma cell lines at several differentiation degrees. The isoform expression pattern depends on the degree of cell differentiation. Differentiated cell lines do not produce any of the versican isoforms as analyzed by Western blot, Northern blot and RT-PCR. All cell lines with an early or intermediate degree of differentiation (AX3, SK-mel-37, Rider, SK-mel-1.36-1-5 and SK-mel-3.44) expressed V0 and V1 transcripts, whereas V2 and V3 expression was shown only by the undifferentiated cell lines SK-mel-1.36-1-5 and Rider. Furthermore, we have analyzed the expression of versican isoforms in SK-mel-3.44 and SK-mel-1.36-1-5 cells induced to differentiate by TPA treatment. The expression of the large V0, V1 and V2 isoforms practically disappears in differentiated cells, whereas V3 remains detectable by RT-PCR analysis.
Collapse
Affiliation(s)
- Clelia Domenzain
- Departament de Bioqui;mica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 081893, Spain
| | | | | | | | | |
Collapse
|