1
|
Bisphenol A Deranges the Endocannabinoid System of Primary Sertoli Cells with an Impact on Inhibin B Production. Int J Mol Sci 2020; 21:ijms21238986. [PMID: 33256105 PMCID: PMC7730056 DOI: 10.3390/ijms21238986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor that negatively affects spermatogenesis, a process where Sertoli cells play a central role. Thus, in the present study we sought to ascertain whether BPA could modulate the endocannabinoid (eCB) system in exposed mouse primary Sertoli cells. Under our experimental conditions, BPA turned out to be cytotoxic to Sertoli cells with an half-maximal inhibitory concentration (IC50) of ~6.0 µM. Exposure to a non-cytotoxic dose of BPA (i.e., 0.5 μM for 48 h) increased the expression levels of specific components of the eCB system, namely: type-1 cannabinoid (CB1) receptor and diacylglycerol lipase-α (DAGL-α), at mRNA level, type-2 cannabinoid (CB2) receptor, transient receptor potential vanilloid 1 (TRPV1) receptors, and DAGL-β, at protein level. Interestingly, BPA also increased the production of inhibin B, but not that of transferrin, and blockade of either CB2 receptor or TRPV1 receptor further enhanced the BPA effect. Altogether, our study provides unprecedented evidence that BPA deranges the eCB system of Sertoli cells towards CB2- and TRPV1-dependent signal transduction, both receptors being engaged in modulating BPA effects on inhibin B production. These findings add CB2 and TRPV1 receptors, and hence the eCB signaling, to the other molecular targets of BPA already known in mammalian cells.
Collapse
|
2
|
Chiappalupi S, Salvadori L, Luca G, Riuzzi F, Calafiore R, Donato R, Sorci G. Do porcine Sertoli cells represent an opportunity for Duchenne muscular dystrophy? Cell Prolif 2019; 52:e12599. [PMID: 30912260 PMCID: PMC6536415 DOI: 10.1111/cpr.12599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/24/2019] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
Sertoli cells (SeC) are responsible for the immunoprivileged status of the testis thanks to which allogeneic or xenogeneic engraftments can survive without pharmacological immune suppression if co‐injected with SeC. This peculiar ability of SeC is dependent on secretion of a plethora of factors including maturation factors, hormones, growth factors, cytokines and immunomodulatory factors. The anti‐inflammatory and trophic properties of SeC have been largely exploited in several experimental models of diseases, diabetes being the most studied. Duchenne muscular dystrophy (DMD) is a lethal X‐linked recessive pathology in which lack of functional dystrophin leads to progressive muscle degeneration culminating in loss of locomotion and premature death. Despite a huge effort to find a cure, DMD patients are currently treated with anti‐inflammatory steroids. Recently, encapsulated porcine SeC (MC‐SeC) have been injected ip in the absence of immunosuppression in an animal model of DMD resulting in reduction of muscle inflammation and amelioration of muscle morphology and functionality, thus opening an additional avenue in the treatment of DMD. The novel protocol is endowed with the advantage of being potentially applicable to all the cohort of DMD patients regardless of the mutation. This mini‐review addresses several issues linked to the possible use of MC‐SeC injected ip in dystrophic people.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | | | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Luo Q, Ji S, Li Z, Huang T, Fan S, Xi Q. Effects of ultrasound therapy on the synovial fluid proteome in a rabbit surgery-induced model of knee osteoarthritis. Biomed Eng Online 2019; 18:18. [PMID: 30795769 PMCID: PMC6387552 DOI: 10.1186/s12938-019-0637-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background Ultrasound (US) therapy may improve osteoarthritis symptoms. We investigated the effects of US on the synovial fluid (SF) proteome in a rabbit knee osteoarthritis (KOA) model to explore its therapeutic mechanisms. Methods Sixteen healthy 6-month-old New Zealand white rabbits (eight male, eight female), weighing 2.5–3.0 kg, were randomly divided into groups A and B with eight rabbits per group. Both groups were subjected to right anterior cruciate ligament transaction. Six weeks after surgery, we treated the operated knee joint of group A rabbits with US and of group B rabbits with sham US for 2 weeks. The proteomes of knee joint SF from groups A and B rabbits were then analyzed using a label-free mass spectrometry (MS) quantification method. Results We identified 19 protein sequences annotated by 361 Gene Ontology (GO) items. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database of rabbit protein sequences, we then annotated the KO numbers of homologous/similar proteins to 32 relevant KEGG pathways. We extracted 10 significantly differentially expressed proteins among the 32 relevant KEGG messages/metabolism pathways. The proteins whose levels were decreased were apolipoprotein A-I (AopA-1), transferrin (TF), carboxypeptidase B2 (CBP2), arylesterase/paraoxonase (PON), fibrinogen alpha chain, and alpha-2-macroglobulin (A2M). The proteins whose levels were increased were molecular chaperone HtpG/heat shock proteins (htpG, HSP90A), decorin (DCN), pyruvate kinase (PK, pyk), and fatty acid-binding protein 4/adipocyte (FABP4, aP2). Conclusions US therapy can alter protein levels in SF, which can decrease AopA-1, TF, CBP2, PON, fibrinogen alpha chain and A2M protein levels, and increase HtpG/HSP90A, DCN, PK/PKY, and FABP4/aP2 protein levels in SF of KOA, suggesting that the therapeutic mechanisms of US therapy on KOA may occur through changes in the SF proteome.
Collapse
Affiliation(s)
- Qinglu Luo
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Shuangquan Ji
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China
| | - Zhimi Li
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China
| | - Tao Huang
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China
| | - Siqin Fan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Qin Xi
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China.
| |
Collapse
|
4
|
Michailov Y, Lunenfeld E, Kapelushnik J, Huleihel M. Leukemia and male infertility: past, present, and future. Leuk Lymphoma 2018; 60:1126-1135. [PMID: 30501544 DOI: 10.1080/10428194.2018.1533126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is the process of the proliferation and differentiation of spermatogonial stem cells (SSCs) to generate sperm. Leukemia patients show impairment in some of the endocrine hormones that are involved in spermatogenesis. They also show a decrease in semen parameters before and after thawing of cryopreserved samples compared to a control. The mechanisms behind these effects have not yet been described. This review summarizes the effect of leukemia on semen parameters from adult patients and highlights feasible suggested mechanisms that may affect impairment of spermatogenesis in these patients. We suggest the possible involvement of leukemia in disturbing hormones involved in spermatogenesis, and the imbalance in testicular paracrine/autocrine factors involved in the formation of SSC niches that control their proliferation and differentiation. Understanding the mechanisms of leukemia in the impairment of spermatogenesis may lead to the development of novel therapeutic strategies mainly for prepubertal boys who do not yet produce sperm.
Collapse
Affiliation(s)
- Yulia Michailov
- a The Shraga Segal Dept. of Microbiology, Immunology, and Genetics , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,d IVF Unit , Barzilai Medical Center , Ashkelon , Israel
| | - Eitan Lunenfeld
- b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,e Department of Obstetrics and Gynaecology , Soroka Medical Center , Beer-Sheva , Israel
| | - Joseph Kapelushnik
- b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,f Department of Pediatric Oncology and Department of Hematology , Soroka Medical Center , Beer-Sheva , Israel
| | - Mahmoud Huleihel
- a The Shraga Segal Dept. of Microbiology, Immunology, and Genetics , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,b The Center of Advanced Research and Education in Reproduction (CARER) , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,g The National Institute for Biotechnology in the Negev , Beer-Sheva , Israel
| |
Collapse
|
5
|
Luca G, Arato I, Sorci G, Cameron DF, Hansen BC, Baroni T, Donato R, White DGJ, Calafiore R. Sertoli cells for cell transplantation: pre-clinical studies and future perspectives. Andrology 2018; 6:385-395. [DOI: 10.1111/andr.12484] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Affiliation(s)
- G. Luca
- Department of Experimental Medicine; University of Perugia; Perugia Italy
- Division of Medical Andrology and Endocrinology of Reproduction; University of Perugia and Saint Mary Hospital; Terni Italy
| | - I. Arato
- Department of Experimental Medicine; University of Perugia; Perugia Italy
| | - G. Sorci
- Department of Experimental Medicine; University of Perugia; Perugia Italy
- Inter-University Institute of Myology (IIM)
| | - D. F. Cameron
- Department of Pathology and Cell Biology; Morsani College of Medicine; University of South Florida; Tampa FL USA
| | - B. C. Hansen
- Department of Internal Medicine and Pediatrics; Morsani College of Medicine; University of South Florida; Tampa FL USA
| | - T. Baroni
- Department of Experimental Medicine; University of Perugia; Perugia Italy
| | - R. Donato
- Department of Experimental Medicine; University of Perugia; Perugia Italy
- Inter-University Institute of Myology (IIM)
- Centro Universitario per la Ricerca sulla Genomica Funzionale; Perugia Italy
| | - D. G. J. White
- Robarts Research Institute; University of Western Ontario; London ON Canada
| | - R. Calafiore
- Division of Medical Andrology and Endocrinology of Reproduction; University of Perugia and Saint Mary Hospital; Terni Italy
- Department of Medicine; University of Perugia; Perugia Italy
| |
Collapse
|
6
|
Kazutaka S, Winnall WR, Muir JA, Hedger MP. Regulation of Sertoli cell activin A and inhibin B by tumour necrosis factor α and interleukin 1α: interaction with follicle-stimulating hormone/adenosine 3',5'-cyclic phosphate signalling. Mol Cell Endocrinol 2011; 335:195-203. [PMID: 21256182 DOI: 10.1016/j.mce.2011.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
Regulation of crucial events during spermatogenesis involves dynamic changes in cytokine production and interactions across the cycle of the seminiferous epithelium. Regulation of activin A and inhibin B production by the inflammatory cytokines, tumour necrosis factor α (TNFα) and interleukin 1α (IL1α), alone and in conjunction with FSH or a cAMP analogue (dibutyryl cAMP), was examined in cultures of Sertoli cells from 20-day old rats. Both TNFα and IL1α stimulated activin A secretion and expression of its subunit (β(A)) mRNA, and suppressed inhibin B secretion and expression of its subunit (α and β(B)) mRNAs. The actions of TNFα and IL1α were opposed by FSH and dibutyryl cAMP. Both cytokines inhibited FSH/dibutyryl cAMP-stimulated inhibin B secretion and mRNA expression as well as stem cell factor mRNA expression. Both cytokines also inhibited FSH-induced cAMP production, and reduced baseline FSH receptor mRNA expression. These data highlight the reciprocal relationship that exists between FSH/cAMP signalling and inflammatory cytokine signalling pathways in the control of Sertoli cell function, and production of activin A/inhibin B in particular. It is anticipated that these interactions play important roles in the fine control of events during the cycle of the seminiferous epithelium and in the inhibition of spermatogenesis during inflammation.
Collapse
Affiliation(s)
- Saito Kazutaka
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
7
|
Hedger MP. Toll-like receptors and signalling in spermatogenesis and testicular responses to inflammation--a perspective. J Reprod Immunol 2011; 88:130-41. [PMID: 21333360 PMCID: PMC7127151 DOI: 10.1016/j.jri.2011.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 02/06/2023]
Abstract
It is self-evident that infection and inflammation in the reproductive tract can inhibit male fertility, but the observation that fertility may also be compromised by systemic inflammation and disease is more difficult to explain. Recent studies implicating microbial pattern-recognition receptors, such as the Toll-like receptors (TLRs), as well as inflammatory cytokines and their signalling pathways, in testicular function have cast new light on this mysterious link between infection/inflammation and testicular dysfunction. It is increasingly evident that signalling pathways normally involved in controlling inflammation play fundamental roles in regulating Sertoli cell activity and responses to reproductive hormones, in addition to promoting immune responses within the testis. Many of the negative effects of inflammation on spermatogenesis may be attributed to elevated production of inflammation-related gene products within the circulation and the testis, which subsequently exert disruptive effects on spermatogenic cell development and survival, as well as the ability of the Sertoli cells to provide support for spermatogenesis. These interactions have important implications for testicular dysfunction and disease, and may eventually provide new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Mark P Hedger
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
8
|
Abu Elheija M, Dyomin V, Ganaiem M, Lunenfeld E, Vardy NS, Huleihel M. Distinct expression of interleukin-1α, interleukin-1β, and interleukin-1 receptor antagonist in testicular tissues and cells from human biopsies with normal and abnormal histology. J Interferon Cytokine Res 2011; 31:401-8. [PMID: 21235388 DOI: 10.1089/jir.2010.0059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines are paracrine/autocrine growth factors known to affect testicular cell functions. The cellular origin and expression levels of interleukin-1 (IL-1) in human normal and pathological testicular biopsies are not yet clear. In the present study, we have investigated the levels and cellular origin of IL-1 family members [IL-1α, IL-β, and IL-1 receptor antagonist (IL-1ra)] in human testicular normal and abnormal biopsies with incomplete maturation arrest (IMA) or Sertoli only syndrome (SOS), using real-time polymerase chain reaction and immunohistochemical staining analysis. Our results show that the levels of IL-1α were higher in Leydig/interstitial cells of biopsies with IMA and SOS compared with normal. The levels of IL-1α in Sertoli cells of normal biopsies were higher than IMA and SOS. The mRNA levels of IL-1α were similar in all biopsies. IL-1β levels were higher in Leydig/interstitial cells of normal biopsies compared with Sertoli and germ cells. The levels of IL-1β were similar in testicular cells of all biopsies. However, the mRNA levels of IL-1β were significantly lower in SOS and IMA biopsies compared with normal. IL-1ra was expressed only in Leydig/interstitial cells, and their expression in normal biopsies was higher than in biopsies with IMA and SOS. The mRNA levels of IL-1ra were similar in all biopsies. Thus, it is possible to suggest the involvement of IL-1 system in the regulation of spermatogenesis and male infertility.
Collapse
Affiliation(s)
- Mahmoud Abu Elheija
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Une nouvelle fonction pour la transferrine exprimée par le testicule. Basic Clin Androl 2009. [DOI: 10.1007/s12610-009-0013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Résumé
Chez l’homme, les oligospermies sévères sont associées à un faible taux de transferrine dans le liquide séminal. La transferrine apparaît comme un bon indicateur pour définir les dysfonctionnements testiculaires. Son niveau d’expression dans le testicule doit être parfaitement contrôlé. Elle y joue un rôl dans le transport du fer. Mais de récents résultats montrent l’existence d’une forme dimérique de la transferrine sertolienne comme puissant régulateur de la phagocytose des corps résiduels par les cellules de Sertoli.
Collapse
|
10
|
Elhija MA, Lunenfeld E, Huleihel M. Induction of IL-1, in the Testes of Adult Mice, Following Subcutaneous Administration of Turpentine. Am J Reprod Immunol 2006; 55:136-44. [PMID: 16433833 DOI: 10.1111/j.1600-0897.2005.00344.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Interleukin-1 family is present in the testicular homogenates and its cellular compartments. It has been suggested that IL-1 is involved in physiological and pathological functions of the testicular tissues. In the present study we examined the effect of acute mostly localized inflammation, using turpentine, on the expression levels of testicular IL-1 system. METHODS OF STUDY Mice were subcutaneously injected with steam-distilled turpentine or saline (control). Three hours to 10 days following the injection, mice were killed and testis and spleen were homogenized and examined for interleukin (IL)-1alpha, IL-1beta, and IL-1 receptor antagonist (IL-1ra) levels by enzyme-linked immunosorbent assay and polymerase chain reaction. RESULTS Subcutaneous injection of turpentine induced mice systemic inflammation, as indicated by significant increase in serum IL-1beta levels, and IL-1alpha, IL-1beta and IL-1ra in spleen homogenates. The levels of IL-1alpha, IL-1beta and IL-1ra were significantly induced in testicular homogenates of adult mice following subcutaneous injection of turpentine. The significant induction of testicular IL-1alpha was detected after 3-24 hr of turpentine injection and decreased later (after 3-10 days) to levels similar to the control. However, significant induction of testicular IL-1beta was detected only after 3-10 days of turpentine injection, and for testicular IL-1ra levels was detected after 3 hr to 6 days of turpentine injection, and after 10 days the levels were similar to the control. These results were also confirmed by mRNA expression of these factors. CONCLUSION Our results demonstrate for the first time the distant effect of acute localized inflammation on testicular IL-1 levels. Thus, transient inflammatory response to infectious/inflammatory agents at non-testicular sites that elicit systemic IL-1 response should be considered during clinical treatment as a possible factor of male infertility.
Collapse
Affiliation(s)
- Mahmoud Abu Elhija
- Department of Microbiology and Immunology and BGU Cancer Research Center, Beer-Sheva, Israel
| | | | | |
Collapse
|
11
|
Emerich DF, Hemendinger R, Halberstadt CR. The testicular-derived Sertoli cell: cellular immunoscience to enable transplantation. Cell Transplant 2004; 12:335-49. [PMID: 12911122 DOI: 10.3727/000000003108746894] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is a renewed enthusiasm for the potential of cellular transplantation as a therapy for numerous clinical disorders. The revived interest is largely due to the unprecedented success of the "Edmonton protocol," which produced a 100% cure rate for type I diabetics following the transplantation of human islet allografts together with a modified immunosuppressive regimen. While these data provide a clear and unequivocal demonstration that transplantation is a viable treatment strategy, the shortage of suitable donor tissue together with the debilitating consequences of lifelong immunosuppression necessitate a concerted effort to develop novel means to enable transplantation on a widespread basis. This review outlines the use of Sertoli cells to provide local immunoprotection to cografted discordant cells, including those from xenogeneic sources. Sertoli cells are normally found in the testes where one of their functions is to provide local immunologic protection to developing germ cells. Isolated Sertoli cells 1) engraft and self-protect when transplanted into allogeneic and xenogeneic environments, 2) protect cografted allogeneic and xenogeneic cells from immune destruction, 3) protect islet grafts to reverse diabetes in animal models, 4) enable survival and function of cografted foreign dopaminergic neurons in rodent models of Parkinson's disease (PD), and 5) promote regeneration of damaged striatal dopaminergic circuitry in those same PD models. These benefits are discussed in the context of several potential underlying biological mechanisms. While the majority of work to date has focused on Sertoli cells to facilitate transplantation for diabetes and PD, the generalized ability of these unique cells to potently suppress the local immune environment opens additional clinical possibilities.
Collapse
|
12
|
Huleihel M, Lunenfeld E. Involvement of intratesticular IL-1 system in the regulation of Sertoli cell functions. Mol Cell Endocrinol 2002; 187:125-32. [PMID: 11988319 DOI: 10.1016/s0303-7207(01)00690-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Interleukin-1 (IL-1) system has been suggested to be involved in the cell-cell cross talk within the testis. To investigate the testicular autocrine, paracrine and endocrine factors involved in the regulation of Sertoli cell functions, we have examined the capacity of Sertoli cell cultures, from immature mice, to produce IL-1alpha, IL-1beta and IL-1 receptor antagonist (IL-1ra) under in vitro cultures and in the presence of testicular physiological and pathological factors. Our investigation revealed that Sertoli cells produce large amounts of IL-1alpha, IL-1ra but not IL-1beta under basal culture conditions, as examined by ELISA and immunohistochemical staining. Liposaccharides (LPS), as well as IL-1alpha and IL-1beta were found to stimulate IL-1alpha and IL-1ra, but not IL-1beta production, in Sertoli cells from immature mice. Maximum concentration of IL-1alpha and of IL-1ra was observed after 2 and 8 h after the stimulation, respectively. The addition of IL-1ra to Sertoli cells did not alter their capacity to constitutively produce IL-1alpha. However, the stimulatory effects of recombinant IL-1alpha on IL-1alpha production by Sertoli cells were reversed by the concomitant addition of recombinant IL-1ra. FSH is capable to induce IL-1ra production in Sertoli cells in a dose-dependent manner but not IL-1alpha or IL-1beta. As expected, Sertoli cell cultures were also shown to constitutively secrete transferrin. Stimulation of these cultures with IL-1alpha, IL-1beta significantly increased their capacity to secrete transferrin. Addition of IL-1ra to unstimulated Sertoli cell cultures did not affect their capacity to secrete transferrin. Stimulation of Sertoli cell cultures with a combination of both IL-1alpha and FSH or IL-1beta and FSH showed additive effect between IL-1 and FSH in their capacity to induce transferrin secretion by these cells. However, stimulation of Sertoli cells with a combination of both IL-1ra and FSH did not affect their capacity to secrete transferrin as compared with FSH-stimulated cultures. Our results with Sertoli cells, in addition to previous data on Lydig cell and germ cells, may suggest the involvement of the IL-1 system in testicular paracrine/autocrine regulation, which could be involved in the regulation of spermatogenesis and spermiogenesis processes and male fertility.
Collapse
Affiliation(s)
- Mahmoud Huleihel
- Department of Microbiology and Immunology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | |
Collapse
|