1
|
Subbotin VM, Subotin MV. The rejection that defies antirejection drugs-chronic vascular rejection (allograft vasculopathy): The role of terminology and linguistic relativity. Drug Discov Today 2024; 29:104202. [PMID: 39389455 DOI: 10.1016/j.drudis.2024.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While allograft loss due to acute rejection has been dramatically reduced due to the introduction of immunophilins, this therapy has little effect on allografts lost due to chronic vascular rejection. This situation may be due to a misnomer of the pathology. Specifically, its designation as 'chronic rejection' has given the wrong impression that the cause of the disease has been identified. Analyzing this phenomenon under the rubric of linguistic relativity suggests that the words chosen to name the disease may have restricted our cognitive ability to solve the problem. Thus, we have to step out of the 'alloimmunity/rejection box'. Let's pause between our words, Speak and fall silent again, So that the meaning of the word just spoken, Sounds a clearer echo in our heads. Let's pause between our words. Andrey Makarevich.
Collapse
|
2
|
Aburahma K, de Manna ND, Kuehn C, Salman J, Greer M, Ius F. Pushing the Survival Bar Higher: Two Decades of Innovation in Lung Transplantation. J Clin Med 2024; 13:5516. [PMID: 39337005 PMCID: PMC11432129 DOI: 10.3390/jcm13185516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Survival after lung transplantation has significantly improved during the last two decades. The refinement of the already existing extracorporeal life support (ECLS) systems, such as extracorporeal membrane oxygenation (ECMO), and the introduction of new techniques for donor lung optimization, such as ex vivo lung perfusion (EVLP), have allowed the extension of transplant indication to patients with end-stage lung failure after acute respiratory distress syndrome (ARDS) and the expansion of the donor organ pool, due to the better evaluation and optimization of extended-criteria donor (ECD) lungs and of donors after circulatory death (DCD). The close monitoring of anti-HLA donor-specific antibodies (DSAs) has allowed the early recognition of pulmonary antibody-mediated rejection (AMR), which requires a completely different treatment and has a worse prognosis than acute cellular rejection (ACR). As such, the standardization of patient selection and post-transplant management has significantly contributed to this positive trend, especially at high-volume centers. This review focuses on lung transplantation after ARDS, on the role of EVLP in lung donor expansion, on ECMO as a principal cardiopulmonary support system in lung transplantation, and on the diagnosis and therapy of pulmonary AMR.
Collapse
Affiliation(s)
- Khalil Aburahma
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Nunzio Davide de Manna
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Mark Greer
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| |
Collapse
|
3
|
Olejkowska N, Gorczyca I, Rękas M, Garley M. Immunopathology of Corneal Allograft Rejection and Donor-Specific Antibodies (DSAs) as Immunological Predictors of Corneal Transplant Failure. Cells 2024; 13:1532. [PMID: 39329716 PMCID: PMC11430735 DOI: 10.3390/cells13181532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Despite tremendous developments in the field of laboratory testing in transplantation, the rules of eligibility for corneal transplantation still do not include typing of human leukocyte antigens (HLAs) in the donor and recipient or detection of donor-specific antibodies (DSAs) in the patient. The standard use of diagnostic algorithms is due to the cornea belonging to immunologically privileged tissues, which usually determines the success of transplantation of this tissue. A medical problem is posed by patients at high risk of transplant rejection, in whom the immune privilege of the eye is abolished and the risk of transplant failure increases. Critical to the success of transplantation in patients at high risk of corneal rejection may be the selection of an HLA-matched donor and recipient, and the detection of existing and/or de novo emerging DSAs in the patient. Incorporating the assessment of these parameters into routine diagnostics may contribute to establishing immune risk stratification for transplant rejection and effective personalized therapy for patients.
Collapse
Affiliation(s)
| | - Iwona Gorczyca
- Department of Ophthalmology, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marek Rękas
- Department of Ophthalmology, Military Institute of Medicine-National Research Institute, Szaserów 128, 04-141 Warsaw, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
Martin KE, Hammer Q, Perica K, Sadelain M, Malmberg KJ. Engineering immune-evasive allogeneic cellular immunotherapies. Nat Rev Immunol 2024; 24:680-693. [PMID: 38658708 DOI: 10.1038/s41577-024-01022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics.
Collapse
Affiliation(s)
- Karen E Martin
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway.
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway.
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Tran TH, Heinold A, Spackova M, Pham L, Stelljes M, Dreger P. Relevance of donor-specific HLA antibodies in hematopoietic cell transplantation. Best Pract Res Clin Haematol 2024; 37:101576. [PMID: 39396260 DOI: 10.1016/j.beha.2024.101576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
Advances in hematopoietic cell transplantation have expanded the use of alternative donors such as haploidentical family donors or mismatched unrelated donors. However, donor-specific HLA antibodies (DSA) have been recognized as a significant risk factor of primary graft failure after HLA incompatible transplantation. Therefore, screening for HLA antibodies and taking DSA into consideration in the process of donor search play an increasingly important role in donor selection. If an HLA compatible donor is not available, desensitization may enable a successful transplantation. In this review, we describe the currently most widely used methods for HLA antibody detections including their pitfalls. In addition, we summarize the results of the studies on the impact of preformed DSA on transplant outcomes and their treatment options. Many more and larger studies are needed to clarify laboratory issues as well as immunological and clinical aspects in the management of DSA.
Collapse
Affiliation(s)
- Thuong Hien Tran
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Andreas Heinold
- Institute for Transfusion Medicine, Essen University Hospital, Essen, Germany
| | - Magdalena Spackova
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lien Pham
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Stelljes
- Division of Bone Marrow Transplantation, Department of Hematology and Oncology, Münster University Hospital, Münster, Germany
| | - Peter Dreger
- Division of Stem Cell Transplantation, Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Jucaud V. Allogeneic HLA Humoral Immunogenicity and the Prediction of Donor-Specific HLA Antibody Development. Antibodies (Basel) 2024; 13:61. [PMID: 39189232 PMCID: PMC11348167 DOI: 10.3390/antib13030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
The development of de novo donor-specific HLA antibodies (dnDSAs) following solid organ transplantation is considered a major risk factor for poor long-term allograft outcomes. The prediction of dnDSA development is a boon to transplant recipients, yet the assessment of allo-HLA immunogenicity remains imprecise. Despite the recent technological advances, a comprehensive evaluation of allo-HLA immunogenicity, which includes both B and T cell allorecognition, is still warranted. Recent studies have proposed using mismatched HLA epitopes (antibody and T cell) as a prognostic biomarker for humoral alloimmunity. However, the identification of immunogenic HLA mismatches has not progressed despite significant improvements in the identification of permissible mismatches. Certainly, the prediction of dnDSA development may benefit permissible HLA mismatched organ transplantations, personalized immunosuppression, and clinical trial design. However, characteristics that go beyond the listing of mismatched HLA antibody epitopes and T cell epitopes, such as the generation of HLA T cell epitope repertoires, recipient's HLA class II phenotype, and immunosuppressive regiments, are required for the precise assessment of allo-HLA immunogenicity.
Collapse
Affiliation(s)
- Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| |
Collapse
|
7
|
Loeffler-Wirth H, Lehmann C, Lachmann N, Doxiadis I. Homozygosity in any HLA locus is a risk factor for specific antibody production: the taboo concept 2.0. Front Immunol 2024; 15:1384823. [PMID: 38840925 PMCID: PMC11150536 DOI: 10.3389/fimmu.2024.1384823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Objective In a cooperative study of the University Hospital Leipzig, University of Leipzig, and the Charité Berlin on kidney transplant patients, we analysed the occurrence of HLA-specific antibodies with respect to the HLA setup of the patients. We aimed at the definition of specific HLA antigens towards which the patients produced these antibodies. Methods Patients were typed for the relevant HLA determinants using mainly the next-generation technology. Antibody screening was performed by the state-of-the-art multiplex-based technology using microspheres coupled with the respective HLA alleles of HLA class I and II determinants. Results Patients homozygous for HLA-A*02, HLA-A*03, HLA-A*24, HLA-B*07, HLA-B*18, HLA-B*35, HLA-B*44, HLA-C*03, HLA-C*04, and HLA-C*07 in the class I group and HLA-DRB1*01, HLA-DRB1*03, HLA-DRB1*07, HLA-DRB1*15, HLA-DQA1*01, HLA-DQA1*05, HLA-DQB1*02, HLA-DQB1*03(7), HLA-DQB1*06, HLA-DPA1*01, and HLA-DPB1*04 in the class II group were found to have a significant higher antibody production compared to the heterozygous ones. In general, all HLA determinants are affected. Remarkably, HLA-A*24 homozygous patients can produce antibodies towards all HLA-A determinants, while HLA-B*18 homozygous ones make antibodies towards all HLA-B and selected HLA-A and C antigens, and are associated with an elevation of HLA-DRB1, parts of DQB1 and DPB1 alleles. Homozygosity for the HLA class II HLA-DRB1*01, and HLA-DRB1*15 seems to increase the risk for antibody responses against most of the HLA class I antigens (HLA-A, HLA-B, and HLA-C) in contrast to HLA-DQB1*03(7) where a lower risk towards few HLA-A and HLA-B alleles is found. The widely observed differential antibody response is therefore to be accounted to the patient's HLA type. Conclusion Homozygous patients are at risk of producing HLA-specific antibodies hampering the outcome of transplantation. Including this information on the allocation procedure might reduce antibody-mediated immune reactivity and prevent graft loss in a patient at risk, increasing the life span of the transplanted organ.
Collapse
Affiliation(s)
- Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Leipzig, Germany
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Leipzig, Germany
| | - Nils Lachmann
- Institute for Transfusion Medicine, H & I Laboratory, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universitätzu Berlin, Berlin, Germany
| | - Ilias Doxiadis
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Fang X, Cui S, Lee H, Min JW, Lim SW, Oh EJ, Yang CW, Shin YJ, Chung BH. Combined Use of Tocilizumab and Mesenchymal Stem Cells Attenuate the Development of an Anti-HLA-A2.1 Antibody in a Highly Sensitized Mouse Model. Int J Mol Sci 2024; 25:1378. [PMID: 38338657 PMCID: PMC10855827 DOI: 10.3390/ijms25031378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Sensitization to HLA can result in allograft loss for kidney transplantation (KT) patients. Therefore, it is required to develop an appropriate desensitization (DSZ) technique to remove HLA-donor-specific anti-HLA antibody (DSA) before KT. The aim of this research was to investigate whether combined use of the IL-6 receptor-blocking antibody, tocilizumab (TCZ), and bone-marrow-derived mesenchymal stem cells (BM-MSCs) could attenuate humoral immune responses in an allo-sensitized mouse model developed using HLA.A2 transgenic mice. Wild-type C57BL/6 mice were sensitized with skin allografts from C57BL/6-Tg (HLA-A2.1)1Enge/J mice and treated with TCZ, BM-MSC, or both TCZ and BM-MSC. We compared HLA.A2-specific IgG levels and subsets of T cells and B cells using flow cytometry among groups. HLA.A2-specific IgG level was decreased in all treated groups in comparison with that in the allo-sensitized control (Allo-CONT) group. Its decrease was the most significant in the TCZ + BM-MSC group. Regarding the B cell subset, combined use of TCZ and BM-MSC increased proportions of pre-pro B cells but decreased proportions of mature B cells in BM (p < 0.05 vs. control). In the spleen, an increase in transitional memory was observed with a significant decrease in marginal, follicular, and long-lived plasma B cells (p < 0.05 vs. control) in the TCZ + BM-MSC group. In T cell subsets, Th2 and Th17 cells were significantly decreased, but Treg cells were significantly increased in the TCZ+BM-MSC group compared to those in the Allo-CONT group in the spleen. Regarding RNA levels, IL-10 and Foxp3 showed increased expression, whereas IL-23 and IFN-γ showed decreased expression in the TCZ + BM-MSC group. In conclusion, combined use of TCZ and BM-MSC can inhibit B cell maturation and up-regulate Treg cells, finally resulting in the reduction of HLA.A2-specific IgG in a highly sensitized mouse model. This study suggests that the combined use of TCZ and BM-MSC can be proposed as a novel strategy in a desensitization protocol for highly sensitized patients.
Collapse
Affiliation(s)
- Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Won Min
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Bucheon-si 14647, Republic of Korea
| | - Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Eun-Jee Oh
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
Wiśnicki K, Donizy P, Hałoń A, Wawrzonkowski P, Janczak D, Krajewska M, Banasik M. Indoleamine 2,3-Dioxygenase 1 (IDO1) in Kidney Transplantation: A Guardian against Rejection. J Clin Med 2023; 12:7531. [PMID: 38137602 PMCID: PMC10743959 DOI: 10.3390/jcm12247531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Kidney transplantation is a crucial treatment for end-stage kidney disease, with immunosuppressive drugs helping to reduce acute rejection rates. However, kidney graft longevity remains a concern. This study explores the role of indoleamine 2,3-dioxygenase 1 (IDO1) in kidney transplant immunology. IDO1 breaks down tryptophan, affecting immune cell behavior, primarily T-cells. The research focuses on both cellular and antibody-mediated immune responses, often causing graft damage. The study assessed IDO1 expression in renal transplant biopsies from patients with graft function decline, examining its connection to clinical parameters. A total of 121 biopsy samples were evaluated for IDO1 expression using immunohistochemistry. Patients were categorized as IDO1(+) positive or IDO1(-) negative based on immunoreactivity in tubular epithelium. Results showed a significant link between IDO1 expression and rejection incidence. IDO1(+) positive patients had lower rejection rates (32.9%) compared to IDO1(-) negative ones (62.2%) [p = 0.0017], with substantial differences in antibody-mediated rejection (AMR) (5.2% vs. 20%) [p = 0.0085] and T-cell mediated rejection (TCMR) (31.6% vs. 57.8%). These associations suggest that IDO1 may play a protective role in kidney transplant rejection. IDO1 modulation could offer novel therapeutic avenues to enhance graft survival. The study underscores IDO1 as a potential marker for rejection risk assessment, with its potential applications in personalized interventions and improved patient outcomes. Further research is needed to fully comprehend the mechanisms behind IDO1's immunomodulatory functions and its potential clinical translation.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Patryk Wawrzonkowski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.W.); (M.K.)
| |
Collapse
|
10
|
Quon JC, Kaneta K, Fotiadis N, Menteer J, Lestz RM, Weisert M, Baxter-Lowe LA. HLA diversity in ethnic populations can affect detection of donor-specific antibodies by single antigen beads. Front Immunol 2023; 14:1287028. [PMID: 38077376 PMCID: PMC10701672 DOI: 10.3389/fimmu.2023.1287028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction In solid-organ transplantation, human leukocyte antigen (HLA) donor-specific antibodies (DSA) are strongly associated with graft rejection, graft loss, and patient death. The predominant tests used for detecting HLA DSA before and after solid-organ transplantation are HLA single antigen bead (SAB) assays. However, SAB assays may not detect antibodies directed against HLA epitopes that are not represented in the SAB. The prevalence and potential impact of unrepresented HLA epitopes are expected to vary by ethnicity, but have not been thoroughly investigated. To address this knowledge gap, HLA allele frequencies from seven ethnic populations were compared with HLA proteins present in SAB products from two manufacturers to determine unrepresented HLA proteins. Materials Allele frequencies were obtained from the Common, Intermediate, and Well Documented HLA catalog v3.0, and frequencies of unrepresented HLA types were calculated. Next-generation sequencing was used to determine HLA types of 60 deceased solid-organ donors, and results were used to determine if their HLA-A, -B, -C, and -DRB1 proteins were not present in SAB reagents from two vendors. Unrepresented HLA proteins were compared with the most similar protein in SAB assays from either vendor and then visualized using modeling software to assess potential HLA epitopes. Results For the seven ethnic populations, 0.5% to 11.8% of each population had HLA proteins not included in SAB assays from one vendor. Non-European populations had greater numbers of unrepresented alleles. Among the deceased donors, 26.7% (16/60) had at least one unrepresented HLA-A, -B, -C, or -DRB1 protein. Structural modeling demonstrated that a subset of these had potential HLA epitopes that are solvent accessible amino acid mismatches and are likely to be accessible to B cell receptors. Discussion In conclusion, SAB assays cannot completely rule out the presence of HLA DSA. HLA epitopes not represented in those assays vary by ethnicity and should not be overlooked, especially in non-European populations. Allele-level HLA typing can help determine the potential for HLA antibodies that could evade detection.
Collapse
Affiliation(s)
- Justin C. Quon
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kelli Kaneta
- Division of Nephrology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Nicholas Fotiadis
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Jondavid Menteer
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Rachel M. Lestz
- Division of Nephrology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Molly Weisert
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Lee Ann Baxter-Lowe
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Mironov AA, Savin MA, Zaitseva AV, Dimov ID, Sesorova IS. Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body. Int J Mol Sci 2023; 24:15044. [PMID: 37894724 PMCID: PMC10606600 DOI: 10.3390/ijms242015044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia;
| | - Anna V. Zaitseva
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia
| | - Ivan D. Dimov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Irina S. Sesorova
- Department of Anatomy, Ivanovo State Medical Academy, 153012 Ivanovo, Russia
| |
Collapse
|
12
|
See SB, Yang X, Burger C, Lamarthée B, Snanoudj R, Shihab R, Tsapepas DS, Roy P, Larivière-Beaudoin S, Hamelin K, Rojas AM, van Besouw NM, Bartosic A, Daniel N, Vasilescu ER, Mohan S, Cohen D, Ratner L, Baan CC, Bromberg JS, Cardinal H, Anglicheau D, Sun Y, Zorn E. Natural Antibodies Are Associated With Rejection and Long-term Renal Allograft Loss in a Multicenter International Cohort. Transplantation 2023; 107:1580-1592. [PMID: 36728359 PMCID: PMC10290575 DOI: 10.1097/tp.0000000000004472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Potentially harmful nonhuman leukocyte antigen antibodies have been identified in renal transplantation, including natural immunoglobulin G antibodies (Nabs) reactive to varied antigenic structures, including apoptotic cells. METHODS In this retrospective, multicenter study, we assessed Nabs by reactivity to apoptotic cells in sera collected from 980 kidney transplant recipients across 4 centers to determine their association with graft outcomes. RESULTS Elevated pretransplant Nabs were associated with graft loss (hazard ratio [HR] 2.71; 95% confidence interval [CI], 1.15-6.39; P = 0.0232), the composite endpoint of graft loss or severe graft dysfunction (HR 2.40; 95% CI, 1.13-5.10; P = 0.0232), and T cell-mediated rejection (odds ratio [OR] 1.77; 95% CI, 1.07-3.02; P = 0.0310). High pretransplant Nabs together with donor-specific antibodies (DSAs) were associated with increased risk of composite outcomes (HR 6.31; 95% CI, 1.81-22.0; P = 0.0039). In patients with high pretransplant Nabs, the subsequent development of posttransplant Nabs was associated with both T cell-mediated rejection (OR 3.64; 95% CI, 1.61-8.36; P = 0.0021) and mixed rejection (OR 3.10; 95% CI, 1.02-9.75; P = 0.0473). Finally, elevated pre- and posttransplant Nabs combined with DSAs were associated with increased risk of composite outcomes (HR 3.97; 95% CI, 1.51-10.43; P = 0.0052) and T cell-mediated rejection (OR 7.28; 95% CI, 2.16-25.96; P = 0.0016). CONCLUSIONS The presence of pre- and posttransplant Nabs, together with DSAs, was associated with increased risk of poor graft outcomes and rejection after renal transplantation.
Collapse
Affiliation(s)
- Sarah B. See
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, USA
| | - Xue Yang
- Department of Biostatistics, Columbia University Irving Medical Center, New York, USA
| | - Carole Burger
- Department of Kidney Transplantation, Hôpital Universitaire Necker-Assistance Publique Hopitaux de Paris, France
| | - Baptiste Lamarthée
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Paris, France
| | - Renaud Snanoudj
- Department of Kidney Transplantation, Hôpital Kremlin Bicêtre, Paris, France
| | - Ronzon Shihab
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, USA
| | - Demetra S. Tsapepas
- Department of Surgery, Columbia University Vagelos College of Physicians & Surgeons, New York, USA
| | - Poulomi Roy
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, USA
| | - Stéphanie Larivière-Beaudoin
- Research Center, Centre Hospitalier de l’Université de Montréal, Montreal, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Canada
| | - Katia Hamelin
- Research Center, Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | - Aleixandra Mendoza Rojas
- Department of Internal Medicine – Nephrology and Transplantation, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole M. van Besouw
- Department of Internal Medicine – Nephrology and Transplantation, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Amanda Bartosic
- Department of Surgery, University of Maryland School of Medicine, Baltimore, USA
| | - Nikita Daniel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, USA
| | - E. Rodica Vasilescu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Sumit Mohan
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons, New York, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, USA
| | - David Cohen
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons, New York, USA
| | - Lloyd Ratner
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons, New York, USA
| | - Carla C. Baan
- Department of Internal Medicine – Nephrology and Transplantation, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, USA
| | - Héloïse Cardinal
- Research Center, Centre Hospitalier de l’Université de Montréal, Montreal, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Canada
| | - Dany Anglicheau
- Department of Kidney Transplantation, Hôpital Universitaire Necker-Assistance Publique Hopitaux de Paris, France
| | - Yifei Sun
- Department of Biostatistics, Columbia University Irving Medical Center, New York, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
13
|
Kim HW, Lee J, Heo SJ, Kim BS, Huh KH, Yang J. Comparison of high-dose IVIG and rituximab versus rituximab as a preemptive therapy for de novo donor-specific antibodies in kidney transplant patients. Sci Rep 2023; 13:7682. [PMID: 37169835 PMCID: PMC10175554 DOI: 10.1038/s41598-023-34804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
De novo donor-specific antibody (dnDSA) is associated with a higher risk of kidney graft failure. However, it is unknown whether preemptive treatment of subclinical dnDSA is beneficial. Here, we assessed the efficacy of high-dose intravenous immunoglobulin (IVIG) and rituximab combination therapy for subclinical dnDSA. An open-label randomized controlled clinical trial was conducted at two Korean institutions. Adult (aged ≥ 19 years) kidney transplant patients with subclinical class II dnDSA (mean fluorescence intensity ≥ 1000) were enrolled. Eligible participants were randomly assigned to receive rituximab or rituximab with IVIG at a 1:1 ratio. The primary endpoint was the change in dnDSA titer at 3 and 12 months after treatment. A total of 46 patients (24 for rituximab and 22 for rituximab with IVIG) were included in the analysis. The mean baseline estimated glomerular filtration rate was 66.7 ± 16.3 mL/min/1.73 m2. The titer decline of immune-dominant dnDSA at 12 months in both the preemptive groups was significant. However, there was no difference between the two groups at 12 months. Either kidney allograft function or proteinuria did not differ between the two groups. No antibody-mediated rejection occurred in either group. Preemptive treatment with high-dose IVIG combined with rituximab did not show a better dnDSA reduction compared with rituximab alone.Trial registration: IVIG/Rituximab versus Rituximab in Kidney Transplant With de Novo Donor-specific Antibodies (ClinicalTrials.gov Identifier: NCT04033276, first trial registration (26/07/2019).
Collapse
Affiliation(s)
- Hyung Woo Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Juhan Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Beom Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Ha Huh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Jaeseok Yang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Yoshida M, Yamanaga S, Hiraki M, Nishiyama H, Fukuoka S, Uchida A, Yoshimaru K, Hidaka Y, Yamasaki T, Yoshimura H, Toyoda M, Ito T. A Case of Chronic Active Antibody-Mediated Rejection Caused by a Pre-Existing Anti-DQ Donor-Specific Antibody in a Systemic Lupus Erythematosus Recipient Without History of Sensitization: A Case Report. Transplant Proc 2023:S0041-1345(23)00139-2. [PMID: 37055294 DOI: 10.1016/j.transproceed.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is reported to produce anti-HLA antibodies. We report a case of chronic active antibody-mediated rejection caused by pre-existing donor-specific antibody (DSA) in a patient with SLE without a history of sensitization. CASE REPORT The case was a 29-year-old man with end-stage renal disease due to lupus nephritis. Cross-match with the mother was negative, but low titer anti-DQ DSA was detected, although he had no prior history of sensitization. After desensitization with rituximab and mycophenolate mofetil, a living donor kidney transplant was undergone, and his early postoperative period was uneventful. However, his renal function started to decline at 2 years post-transplant. Although there was no rejection on the biopsy at 2.5 years post-transplant, his renal function continued to decline after that. At 7 years, he had failed his graft due to chronic active antibody-mediated rejection. Retrospective analysis of human leukocyte antigen antibody tests revealed that anti-DQ DSA had disappeared at 1 year post-transplant, but high titer DSA was detected again with complement-binding capacity at 2 years and after that. CONCLUSION Careful monitoring might be warranted in an SLE patient with pre-existing DSA, even though the titer was low and without any prior histories of sensitization events.
Collapse
Affiliation(s)
- Masaya Yoshida
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan.
| | - Shigeyoshi Yamanaga
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Mikihisa Hiraki
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Hinoka Nishiyama
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Seiya Fukuoka
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Arisa Uchida
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Kiho Yoshimaru
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Yuji Hidaka
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Takashi Yamasaki
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Hiromi Yoshimura
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Mariko Toyoda
- Department of Nephrology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| | - Teruhiko Ito
- Department of Clinical Laboratory, Japanese Red Cross Kumamoto Hospital, Kumamoto, Kumamoto, Japan
| |
Collapse
|
15
|
Oguz SR, Sinangil A, Barlas S, Ciftci HS, Ulusoy E, İzgi DK, Ecder T, Akin B. Correlation of Luminex-Based Single Antigen Based Results With Complement-Dependent Cytotoxicity Crossmatch and Flow Cytometry Crossmatch Results: A Single-Center Experience From Istanbul. Transplant Proc 2023; 55:303-308. [PMID: 36890054 DOI: 10.1016/j.transproceed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND This study aimed to retrospectively investigate the correlation of mean Class I donor-specific antibody (DSA) intensity values detected in Luminex-based techniques with the results of complement-dependent cytotoxicity crossmatch (CDC-XM) and flow cytometry crossmatch (FC-XM) results. METHODS A total of 335 patients with kidney failure and their living donors whose CDC-XM, FC-XM, and single antigen based (SAB) tests were studied between 2018 and 2020 for transplant preparation from living donor candidates were included in the study. Patients were divided into 4 groups according to their mean fluorescence intensity (MFI) values of SAB assay. RESULTS Anti-HLA antibodies (class I and/or class II) were detected using SAB in 91.6% patients included in the study (MFI >1000). Class I DSA was positive in 34.8% of patients with anti-HLA antibodies. When CDC-XM and FC-XM results were evaluated in the 4 groups separated according to MFI values, 3 patients with DSA MFI <1000 had negative CDC-XM and T-B-FC-XM results. Of 32 patients with DSA-MFI between 1000 and 3000, 93.75% (n = 30) had T-B-FC-XM or CDC-XM-negative results, and 6.25% (n = 2) had B-FC-XM-positive results. The CDC-XM, T, and B-FC-XM were negative in all 17 patients with DSA-MFI between 3000 and 5000. Our results showed that MFI >5834 DSA values were significantly correlated with positive T-FC-XM (P < .001), and MFI >6016 values were significantly correlated with positive CDC-XM (P = .002). In addition, MFI values >5000 were associated with both CDC-XM and FC-XM in our study. CONCLUSIONS The MFI values >5000 correlated with both CDC-XM and FC-XM.
Collapse
Affiliation(s)
- Suleyman Rustu Oguz
- Department of Medical Biology and Genetics, Demiroglu Bilim University and Group Florence Nightingale Hospital, Istanbul, Turkey; Tissue Typing Laboratory, Demiroglu Bilim University and Group Florence Nightingale Hospital, Istanbul, Turkey.
| | - Ayse Sinangil
- Department of Nephrology, Demiroglu Bilim University and Group Florence Nightingale Hospital, Istanbul, Turkey
| | - Soykan Barlas
- Department of General Surgery, Demiroglu Bilim University and Group Florence Nightingale Hospital, Istanbul, Turkey
| | - Hayriye Senturk Ciftci
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ezgi Ulusoy
- Tissue Typing Laboratory, Demiroglu Bilim University and Group Florence Nightingale Hospital, Istanbul, Turkey
| | - Demet Kivanc İzgi
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Medical Biology, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Tevfik Ecder
- Department of Nephrology, Demiroglu Bilim University and Group Florence Nightingale Hospital, Istanbul, Turkey
| | - Baris Akin
- Department of General Surgery, Demiroglu Bilim University and Group Florence Nightingale Hospital, Istanbul, Turkey
| |
Collapse
|
16
|
Tambur AR, Das R. Can We Use Eplets (or Molecular) Mismatch Load Analysis to Improve Organ Allocation? The Hope and the Hype. Transplantation 2023; 107:605-615. [PMID: 36163639 PMCID: PMC9944744 DOI: 10.1097/tp.0000000000004307] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 11/25/2022]
Abstract
In recent years, there have been calls for implementation of "epitope matching" in deceased-donor organ allocation policies (later changed to "eplet matching"). Emerging data indeed support the use of molecular mismatch load analysis in specific patient groups, with the objective of posttransplant stratification into different treatment arms. For this purpose, the expectation is to statistically categorize patients as low- or high-immune-risk. Importantly, these patients will continue to be monitored' and their risk category, as well as their management, can be adjusted according to on-going findings. However, when discussing deceased donor organ allocation and matching algorithms, where the decision is not modifiable and has lasting impact on outcomes, the situation is fundamentally different. The goal of changing allocation schemes is to achieve the best possible HLA compatibility between donor and recipient. Immunologically speaking, this is a very different objective. For this purpose, the specific interplay of immunogenicity between the donor and any potential recipient must be understood. In seeking compatibility, the aim is not to redefine matching but to identify those mismatches that are "permissible" or' in other words, less immunogenic. In our eagerness to improve transplant outcome, unfortunately, we have conflated the hype with the hope. Terminology is used improperly, and new terms are created in the process with no sufficient support. Here, we call for a cautious evaluation of baseline assumptions and a critical review of the evidence to minimize unintended consequences.
Collapse
Affiliation(s)
- Anat R. Tambur
- Comprehensive Transplant Center, Department of Surgery, Northwestern University, Chicago, IL
| | - Rajdeep Das
- Comprehensive Transplant Center, Department of Surgery, Northwestern University, Chicago, IL
| |
Collapse
|
17
|
Liu W, Wang ZL, Kang ZY, Xiao YL, Liu C, Li DH. Liver graft injury caused by de novo donor-specific HLA antibodies in pediatric liver transplant recipients with low, moderate, and high immunologic risk. Am J Surg 2023; 225:275-281. [PMID: 36116972 DOI: 10.1016/j.amjsurg.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study investigated the association between different risk levels of de novo donor-specific anti-human leukocyte antigen antibodies (dnDSAs) and liver graft injury after liver transplantation in pediatric patients. METHODS This retrospective cohort study enrolled 130 patients after liver transplantation. Subjects were divided into the following 4 groups according to the mean fluorescence intensity (MFI) of dnDSAs: high risk group(MFI ≥10,000), medium risk group(4000 ≤ MFI <10,000), low risk group(500 ≤ MFI <4000), and negative group(<500). Liver function indices were examined along with liver puncture biopsy,and the relationship between dnDSA risk level and liver injury after transplantation was assessed. RESULTS Pediatric liver transplant recipients showed significant differences in liver function (ALT, AST, GGT and Bilirubin) according to dnDSA risk level (P < 0.05), and no differences in cumulative incidences of rejection (P = 0.413) and liver fibrosis (P = 0.978) were observed among the number of dnDSAs group. There were differences in the cumulative incidences of antibody-mediated rejection (AMR) (P = 0.001) and T cell-mediated rejection (TCMR) (P = 0.003) across risk groups. The cumulative incidences of TCMR and liver fibrosis (P = 0.0001) were higher in the low-risk group than in the other 3 groups. There were no differences in graft survival rate (P = 0.846) across risk groups. CONCLUSION DnDSAs in pediatric liver transplant recipients are associated with liver transplant rejection and fibrosis. The level of dnDSAs in low risk group should not be disregarded. Routine detection of dnDSAs has clinical utility for noninvasive risk stratification in this population.
Collapse
Affiliation(s)
- Wei Liu
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zheng-Lu Wang
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhong-Yu Kang
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yan-Li Xiao
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Chun Liu
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Dai-Hong Li
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
18
|
Awaji M, Alajlan K, Shaikh A, Alkebasi S, Kutty C, Alshami A, Attas RAA. HLA Sensitization in the Era of COVID-19: Single-Center Experience. Transplant Proc 2022; 54:2658-2662. [PMID: 36372565 PMCID: PMC9537251 DOI: 10.1016/j.transproceed.2022.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
It is well known that several viral infections are capable of triggering the formation of HLA antibodies; however, an association between SARS-CoV-2 and the development of anti-HLA antibodies is not yet confirmed. In this study, we compared the prevalence of HLA antibody before and after COVID-19 infection in a cohort of 3 groups included 58 healthy nonsensitized employees (HNEs), 130 kidney transplant recipients (KTRs), and 62 kidney transplant candidates. There were no significant changes observed in HLA class I antibodies in any of the groups, but evaluation of antibodies to HLA class II revealed a significant change in the KTR group (P = .0184) after acquiring COVID-19 infection and in the HNE group (P = .0043) when compared to the reported prevalence in a similar population. Although we observed the emergence of convalescent de novo donor-specific antibodies in 2 patients, we did not encounter any rejection episodes in the KTR group. Finally, the results of flow cytometry crossmatch in the HNE group were not consistent with the state of antibodies. In conclusion, COVID-19 infection has the potential to produce class II antibodies but with little effect on preexisting sensitization. These antibodies are likely to be transient and not necessarily causing positive crossmatch with the corresponding antigens at the proper mean fluorescent intensity and therefore should not affect access to transplantation. There is a need for further evaluation to ascertain the genuineness of these antibodies and their exact effect on transplant readiness and outcomes.
Collapse
Affiliation(s)
- Mohammad Awaji
- Histocompatibility & Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Kenana Alajlan
- Histocompatibility & Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Alaa Shaikh
- Molecular Diagnostics Laboratory, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Shaima Alkebasi
- Histocompatibility & Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Clara Kutty
- Histocompatibility & Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Alanoud Alshami
- Division of Pediatric Nephrology and Kidney Transplant, Multiorgan Transplant Center, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| | - Rabab Ali Al Attas
- Histocompatibility & Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia,Address correspondence to Rabab Ali Al Attas MD, F (ACHI), D (ABMLI), Consultant Immunopathologist & Immunogeneticist, Director, Histocompatibility & Immunogenetics Lab & Head, Immunology/Serology Laboratory, Department of Pathology and Lab Medicine, King Fahad Specialist Hospital-Dammam, Al Muraikibat, Amer Bin Thabit St., Building 6, Office 2, PO BOX 15215, Dammam 31444, MBC 35, Saudi Arabia. Tel: (+966) 138043333, ext. 6737, Fax: (+966) 138042222
| |
Collapse
|
19
|
Cholbi E, Espí J, Ventura A, Ramos D, Ramos M, Luis M, Moreno E, Moreno M, Beneyto I, Hernández J. Combined Liver–Kidney Transplantation in High Immunologic Risk Recipients: Kidney Graft Evolution. Transplant Proc 2022; 54:2475-2478. [DOI: 10.1016/j.transproceed.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
|
20
|
Chong AS, Habal MV. From bench to bedside: reversing established antibody responses and desensitization. Curr Opin Organ Transplant 2022; 27:376-384. [PMID: 35950890 PMCID: PMC9474614 DOI: 10.1097/mot.0000000000001009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Basic transplant immunology has primarily focused on the definition of mechanisms, but an often-stated aspirational goal is to translate basic mechanistic research into future therapy. Pretransplant donor-specific antibodies (DSA) mediate hyperacute as well as early antibody-mediated rejection (AMR), whereas DSA developing late posttransplantation may additionally mediate chronic rejection. Although contemporary immunosuppression effectively prevents early cellular rejection after transplant in nonsensitized patients, it is less effective at controlling preexisting HLA antibody responses or reversing DSA once established, thus underscoring a need for better therapies. RECENT FINDINGS We here review the development of a bench-to-bedside approach involving transient proteasome inhibition to deplete plasma cells, combined with maintenance co-stimulation blockade, with CTLA-4Ig or belatacept, to prevent the generation of new antibody-secreting cells (ASCs). SUMMARY This review discusses how this treatment regimen, which was rationally designed and validated to reverse established DSA responses in mouse models, translated into reversing active AMR in the clinic, as well as desensitizing highly sensitized patients on the transplant waitlist.
Collapse
Affiliation(s)
- Anita S. Chong
- Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Marlena V. Habal
- Department of Medicine, Columbia University College of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Wiśnicki K, Donizy P, Remiorz A, Janczak D, Krajewska M, Banasik M. Significance of Indoleamine 2,3-Dioxygenase Expression in the Immunological Response of Kidney Graft Recipients. Diagnostics (Basel) 2022; 12:2353. [PMID: 36292041 PMCID: PMC9600090 DOI: 10.3390/diagnostics12102353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney transplantation is unquestionably the most advantageous and preferred treatment when patients with end-stage renal disease are considered. It does have a substantially positive influence on both the quality and expectancy of their lives. Thus, it is quintessential to extend the survival rate of kidney grafts. On account of T-cell-focused treatment, this is being exponentially achieved. The kynurenine pathway, as an immunosuppressive apparatus, and indoleamine 2,3-dioxygenase (IDO1), as its main regulator, are yet to be exhaustively explored. This review presents the recognised role of IDO1 and its influence on the kynurenine pathway, with emphasis on immunosuppression in kidney transplant protection.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agata Remiorz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
22
|
Rationale and Protocol of the Multimodality Evaluation of Antibody-Mediated Injury in Heart Transplantation (LEONE-HT) Observational Cross-Sectional Study. Methods Protoc 2022; 5:mps5050075. [PMID: 36287047 PMCID: PMC9608829 DOI: 10.3390/mps5050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction: Heart transplant (HT) survival has barely improved in the last decades, which is unsatisfactory for many HT recipients. The development of anti-human leukocyte antigen (anti-HLA) antibodies in HT patients is associated with a cardiac allograft dysfunction. The mechanisms leading to this damage are unclear. The Multimodality Evaluation Of Antibody-Mediated Injury In Heart Transplantation (LEONE-HT) study aimed to thoroughly describe the damage inflicted on the myocardium by anti-HLA antibodies. Methods and analysis: The LEONE-HT study is a cohort study with a cross-sectional approach in which HT patients with positive anti-HLA antibodies are compared with coetaneous HT patients with negative anti-HLA antibodies. All patients will undergo a state-of-the-art multimodal assessment, including imaging techniques, coronary anatomy and physiology evaluations and histological and immunological analyses. The individual and combined primary outcomes of structural graft injuries and longitudinal secondary outcomes are to be compared between the exposed and non-exposed groups with univariate and multivariable descriptive analyses. Ethics and dissemination: The LEONE-HT study is carried out in accordance with the principles set out in the Declaration of Helsinki and the International Conference on Harmonization guidelines for good clinical practice and following national laws and regulations. The study design, objectives and participant centers have been communicated to clinicaltrials.gov (NCT05184426). The LEONE-HT study counts on the support of patient associations to disseminate the objectives and results of the research. This study was funded by the Spanish Ministry of Science and Innovation and the Spanish Society of Cardiology.
Collapse
|
23
|
Rao PN, Deo DD, Gaur A, Baran DA, Zucker MJ, Kapoor S, Marchioni MA, Almendral J, Kandula P, Patel A. A new flow cytometry assay identifies recipient IgG subtype antibodies binding donor cells: increasing donor availability for highly sensitised patients. Clin Transl Immunology 2022; 11:e1415. [PMID: 36092480 PMCID: PMC9446897 DOI: 10.1002/cti2.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives There are four immunoglobulin (IgG) subtypes that have varying complement‐activating ability: strong (IgG3 and IgG1) and weak (IgG2 and IgG4). The standard flow cytometric crossmatch (FCM) assay does not distinguish between the various subtypes of the IgG molecule. This study outlines the development and use of a novel cell‐based IgG subtype‐specific FCM assay that is able to detect the presence of and quantitate the IgG subtypes bound to donor cells. Methods A six‐colour lyophilised reagent was designed that specifically detects the four IgG subtypes, as well as distinguishes between T cells and B cells in the lymphocyte population. To test the efficacy of this reagent, a retrospective evaluation of a group of highly sensitised patients awaiting heart and kidney transplant was carried out, who, because of positive standard FCM results, had been deemed incompatible with numerous prior potential donors. Results Observations in this study demonstrate that the positive standard FCM results were mainly because of the presence of noncomplement‐activating IgG2 or IgG4 antibodies. The results were supported by the absence of C3d‐binding donor‐specific antibodies (DSA) and a negative complement‐dependent cytotoxicity crossmatch (CDC). Conclusion Preliminary data presented in this study demonstrate the reliability of the novel IgG subtype assay to detect the presence of pretransplant, complement‐activating antibodies bound to donor cells. The knowledge gained from the IgG subtype assay and the C3d‐binding specificities of DSAs provides improved identification of donor suitability in pretransplant patients, potentially increasing the number of transplants.
Collapse
Affiliation(s)
- Prakash N Rao
- Personalized Transplant Medicine Institute New Providence NJ USA
| | - Dayanand D Deo
- Personalized Transplant Medicine Institute New Providence NJ USA
| | | | | | | | | | | | | | | | - Anup Patel
- Robert Wood Johnson Barnabas Health Livingston NJ USA
| |
Collapse
|
24
|
Betjes MGH, Roelen DL, van Agteren M, Kal-van Gestel J. Causes of Kidney Graft Failure in a Cohort of Recipients With a Very Long-Time Follow-Up After Transplantation. Front Med (Lausanne) 2022; 9:842419. [PMID: 35733857 PMCID: PMC9207199 DOI: 10.3389/fmed.2022.842419] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/05/2022] [Indexed: 01/03/2023] Open
Abstract
Background Biopsy-proven causes of graft loss many years after kidney transplantation are scarcely documented. Methods Patients transplanted between 1995 and 2005 (n = 737) in a single center were followed on a regular basis until 2021. The recipients were divided according to age at transplantation into 3 groups; 18–39 years (young), 40–55 years (middle age), and older than 55 years (elderly). For cause biopsies of renal transplants were clustered into the categories, rejection, IFTA, return original disease, and diagnosis of de novo kidney disease. Results Rejection was the main cause of graft failure censored for death at every time period after transplantation. The incidence of T cell-mediated rejection (TCMR) became rare 6 years after transplantation while the cumulative incidence of antibody-mediated rejection (ABMR) increased over time (1.1% per year). ABMR was not diagnosed anymore beyond 15 years of follow-up in recipients without pre-transplant donor-specific antibodies (DSA). An episode of TCMR was associated with an increased incidence of ABMR diagnosis in the short-term but did not increase the overall incidence of AMBR not in the long-term. Death as a cause of graft failure was an important competitive risk factor long after transplantation and resulted in a significantly lower frequency of rejection-related graft loss in the elderly group (11 vs. 23% in the young group at 15 year follow-up). Conclusion Rejection is a major cause of graft loss but recipient’s age, time after transplantation, and the presence of DSA before transplantation determine the relative contribution to overall graft loss and the type of rejection involved.
Collapse
Affiliation(s)
- Michiel G. H. Betjes
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
- *Correspondence: Michiel G. H. Betjes, ; orcid.org/0000-0001-9435-6208
| | - Dave L. Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Madelon van Agteren
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
| | - Judith Kal-van Gestel
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam Transplantation Institute, Rotterdam, Netherlands
| |
Collapse
|
25
|
Correlation of Fc Receptor Polymorphisms with Pneumococcal Antibodies in Vaccinated Kidney Transplant Recipients. Vaccines (Basel) 2022; 10:vaccines10050725. [PMID: 35632480 PMCID: PMC9146743 DOI: 10.3390/vaccines10050725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/13/2023] Open
Abstract
Several polymorphisms within Fc receptors (FCR) have been described, some of which correlate with allograft function. In the current study, we determined three Fcγ receptor and five Fcα receptor dimorphisms in 47 kidney transplant recipients who had been vaccinated against Streptococcus pneumoniae. We analyzed if FCR genotypes correlated with pneumococcal antibodies and their serotype-specific opsonophagocytic function, tested prior to and at months 1 and 12 post-vaccination. In parallel, we assessed antibodies against HLA and MICA and determined kidney function. We observed that IgG2 antibodies against pneumococci at months 1 and 12 after vaccination and IgA antibodies at month 1 differed significantly between the carriers of the three genotypes of FCGR3A rs396991 (V158F, p = 0.02; 0.04 and 0.009, respectively). Moreover, the genotype of FCGR3A correlated with serotype-specific opsonophagocytic function, reaching statistical significance (p < 0.05) at month 1 for 9/13 serotypes and at month 12 for 6/13 serotypes. Heterozygotes for FCGR3A had the lowest antibody response after pneumococcal vaccination. On the contrary, heterozygotes tended to have more antibodies against HLA class I and impaired kidney function. Taken together, our current data indicate that heterozygosity for FCGR3A may be unfavorable in kidney transplant recipients.
Collapse
|
26
|
Olszowska-Zaremba N, Zagożdżon R, Gozdowska J. Accuracy of virtual crossmatch (VXM) prediction of physical crossmatch (PXM) results of donor specific antibody (DSA) in routine pretransplant settings–A single-center experience. Transpl Immunol 2022; 72:101583. [DOI: 10.1016/j.trim.2022.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
|
27
|
Battle RK, Rennie TJW, Phelan PJ, Abel AA, McConnell S, Turner DM. Highly sensitised patients awaiting deceased donor renal transplants are disadvantaged by the presence of denatured HLA antibody detected in routine HLA antibody testing. HLA 2022; 100:24-36. [PMID: 35150076 DOI: 10.1111/tan.14578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022]
Abstract
Luminex Single Antigen Bead (SAB) assays used to detect HLA antibodies may artificially increase sensitisation in highly sensitised patients. The presence of denatured HLA (dHLA) within the assay enables antibodies specific to cryptic HLA epitopes to bind, such antibodies are not clinically relevant. We sought to exclude dHLA reactivity in a cohort of very highly sensitised patients (HSP), calculated reaction frequency (cRF) 95-100%, and determine the effect upon sensitisation. Such patients have limited access to suitable donors and small changes in their HLA antibody profile, particularly where their cRF is 100%, can increase their opportunity of a transplant. We determined the presence of dHLA by aligning antibody reactivity which did not correspond to known HLA class I epitope mismatches with the results of assays modified to detect class I dHLA. 130 class I dHLA reactions were identified within 11 HSP, all of whom had clear sensitising events. cRF was corrected for dHLA, mean cRF 98.2% (93-100) pre and 95.5% (87-100) post correction (P = 0.0156). An increase in the number of predicted compatible donors (p = 0.0078) after dHLA correction was demonstrated. Two manufacturers SAB assays were used. A reduction of patients with 100% cRF was observed for both manufactures. dHLA is contributing to sensitisation in HSP and is detrimental to their chances of receiving a compatible transplant. The observed dHLA reactivity varied according to kit manufacturers (P = 0.0001), this is potentially a useful finding for laboratories wishing to discriminate between nHLA and dHLA, but without the resources required to regularly perform dHLA assay and epitope analyses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Richard K Battle
- Scottish National Blood Transfusion Service, Royal Infirmary Edinburgh, United States
| | | | - Paul J Phelan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United States
| | - Angela A Abel
- Scottish National Blood Transfusion Service, Royal Infirmary Edinburgh, United States
| | - Sylvia McConnell
- Scottish National Blood Transfusion Service, Royal Infirmary Edinburgh, United States
| | - David M Turner
- Scottish National Blood Transfusion Service, Royal Infirmary Edinburgh, United States
| |
Collapse
|
28
|
Halloran PF, Einecke G, Sikosana MLN, Madill-Thomsen K. The Biology and Molecular Basis of Organ Transplant Rejection. Handb Exp Pharmacol 2022; 272:1-26. [PMID: 35091823 DOI: 10.1007/164_2021_557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Allograft rejection is defined as tissue injury in a transplanted allogeneic organ produced by the effector mechanisms of the adaptive alloimmune response. Effector T lymphocytes and IgG alloantibodies cause two different types of rejection that can occur either individually or simultaneously: T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR). In TCMR, cognate effector T cells infiltrate the graft and orchestrate an interstitial inflammatory response in the kidney interstitium in which effector T cells engage antigen-presenting myeloid cells, activating the T cells, antigen-presenting cells, and macrophages. The result is intense expression of IFNG and IFNG-induced molecules, expression of effector T cell molecules and macrophage molecules and checkpoints, and deterioration of parenchymal function. The diagnostic lesions of TCMR follow, i.e. interstitial inflammation, parenchymal deterioration, and intimal arteritis. In ABMR, HLA IgG alloantibodies produced by plasma cells bind to the donor antigens on graft microcirculation, leading to complement activation, margination, and activation of NK cells and neutrophils and monocytes, and endothelial injury, sometimes with intimal arteritis. TCMR becomes infrequent after 5-10 years post-transplant, probably reflecting adaptive mechanisms such as checkpoints, but ABMR can present even decades post-transplant. Some rejection is triggered by inadequate immunosuppression and non-adherence, challenging the clinician to target effective immunosuppression even decades post-transplant.
Collapse
Affiliation(s)
- Philip F Halloran
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Gunilla Einecke
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Majid L N Sikosana
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
29
|
Groves HK, Lee H. Perioperative Management of Renal Failure and Renal Transplant. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
El-Awar N. HLA epitopes – Empirically defined as conformational amino acids sequences of the HLA antigen and are likely to be part of the binding sites of anti-HLA antibodies. Hum Immunol 2022; 83:204-218. [DOI: 10.1016/j.humimm.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
|
31
|
Paluszkiewicz P, Martuszewski A, Zaręba N, Wala K, Banasik M, Kepinska M. The Application of Nanoparticles in Diagnosis and Treatment of Kidney Diseases. Int J Mol Sci 2021; 23:ijms23010131. [PMID: 35008556 PMCID: PMC8745391 DOI: 10.3390/ijms23010131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia-reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.
Collapse
Affiliation(s)
- Patrycja Paluszkiewicz
- Department of Emergency Medical Service, Wroclaw Medical University, Bartla 5, 50-367 Wroclaw, Poland;
| | - Adrian Martuszewski
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland;
| | - Natalia Zaręba
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| |
Collapse
|
32
|
The Summarized Assessment of Endothelin A Receptor Expression in Renal Transplant Compartments Associated with Antibody-Mediated Rejection. Diagnostics (Basel) 2021; 11:diagnostics11122366. [PMID: 34943602 PMCID: PMC8699842 DOI: 10.3390/diagnostics11122366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The occurrence of anti-endothelin A receptor antibodies may be useful in diagnosis of transplant damage. We noticed that the presence of the endothelin A receptor (ETA receptor) in biopsy compartments is yet to be defined. We decided therefore to analysed the presence and relevance of the ETA receptor in biopsy to define the cause. Our study aims to evaluate the expression of ETA receptors in renal recipients after a biopsy due to the worsening of transplant function. METHODS The expression of ETA receptors was analyzed in renal transplant biopsies using the immunohistochemical method. The evaluation of ETA receptors was performed on paraffin sections. ETA receptor expression was analyzed in four compartments of renal transplant biopsies: glomeruli; vessels; tubular epithelium; and interstitium. The assessment was presented using a three-step scale (0: lack of expression; 1: mild to moderate immunoreactivity; 2: high expression). The results of each compartment from a single biopsy were summarized and assessed in the context of antibody-mediated rejection (AMR). RESULTS We analyzed 156 patients who had a renal allograft biopsy after renal transplantation. For each patient, we created a summarized ETA receptor expression score. The summarized ETA receptor expression score analysis showed statistically significant differences in patients with and without AMR. In addition, we noticed that patients with AMR had a significantly higher mean summarized expression of ETA receptor score of 3.28 ± 1.56 compared to patients who had a biopsy for other reasons with a mean summarized ETA receptor expression score of 1.47 ± 1.35 (p < 0.000001). ROC analysis of the ETA receptor expression score for detecting AMR status showed that the most appropriate cut-off for the test of the chosen binary classifier is between 2 and 3 of the summarized ETA receptor expression score. CONCLUSIONS The expression of endothelin A receptors in renal transplant compartments may be associated with antibody-mediated rejection. The positive ETA receptor staining might be a vital feature in the diagnosis of damage in AMR. The summarized ETA receptor expression score seems to be an exciting diagnostic tool in transplant injury assessment.
Collapse
|
33
|
Immunology and Donor-Specific Antibodies in Corneal Transplantation. Arch Immunol Ther Exp (Warsz) 2021; 69:32. [PMID: 34741683 PMCID: PMC8572187 DOI: 10.1007/s00005-021-00636-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
The first human corneal transplantation was performed in 1905 by Eduard Zirm in the Olomouc Eye Clinic, now Czech Republic. However, despite great advancements in microsurgical eye procedures, penetrating keratoplasty in high-risk patients (e.g., vascularized or inflamed corneal tissue, consecutive transplants) remains a challenge. The difficulty is mainly due to the risk of irreversible allograft rejection, as an ocular immune privilege in these patients is abolished and graft rejection is the main cause of corneal graft failure. Therefore, tailored immunosuppressive treatment based on immunological monitoring [e.g., donor-specific antibodies (DSA)] is considered one of the best strategies to prevent rejection in transplant recipients. Although there is indirect evidence on the mechanisms underlying antibody-mediated rejection, the impact of DSA on cornea transplantation remains unknown. Determining the role of pre-existing and/or de novo DSA could advance our understanding of corneal graft rejection mechanisms. This may help stratify the immunological risk of rejection, ultimately leading to personalized treatment for this group of transplant recipients.
Collapse
|
34
|
Louis K, Macedo C, Metes D. Targeting T Follicular Helper Cells to Control Humoral Allogeneic Immunity. Transplantation 2021; 105:e168-e180. [PMID: 33909968 PMCID: PMC8484368 DOI: 10.1097/tp.0000000000003776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Humoral allogeneic immunity driven by anti-HLA donor-specific antibodies and antibody-mediated rejection (AMR) significantly impede prolonged survival of organ allografts after transplantation. Although the importance of T follicular helper (TFH) cells in controlling antibody responses has been long established, their role in directing donor-specific antibody generation leading to AMR was only recently appreciated in the clinical setting of organ transplantation. In this review, we provide a comprehensive summary of the current knowledge on the biology of human TFH cells as well as their circulating counterparts and describe their pivotal role in driving humoral alloimmunity. In addition, we discuss the intrinsic effects of current induction therapies and maintenance immunosuppressive drugs as well as of biotherapies on TFH cells and provide future directions and novel opportunities of biotherapeutic targeting of TFH cells that have the potential of bringing the prophylactic and curative treatments of AMR toward personalized and precision medicine.
Collapse
Affiliation(s)
- Kevin Louis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Human Immunology and Immunopathology, Inserm UMR 976, Université de Paris, Paris, France
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Parsons RF, Baquerizo A, Kirchner VA, Malek S, Desai CS, Schenk A, Finger EB, Brennan TV, Parekh KR, MacConmara M, Brayman K, Fair J, Wertheim JA. Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. Am J Transplant 2021; 21:3225-3238. [PMID: 34212485 DOI: 10.1111/ajt.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Although cellular transplantation remains a relatively small field compared to solid organ transplantation, the prospects for advancement in basic science and clinical care remain bountiful. In this review, notable historical events and the current landscape of the field of cellular transplantation are reviewed with an emphasis on islets (allo- and xeno-), hepatocytes (including bioartificial liver), adoptive regulatory immunotherapy, and stem cells (SCs, specifically endogenous organ-specific and mesenchymal). Also, the nascent but rapidly evolving field of three-dimensional bioprinting is highlighted, including its major processing steps and latest achievements. To reach its full potential where cellular transplants are a more viable alternative than solid organ transplants, fundamental change in how the field is regulated and advanced is needed. Greater public and private investment in the development of cellular transplantation is required. Furthermore, consistent with the call of multiple national transplant societies for allo-islet transplants, the oversight of cellular transplants should mirror that of solid organ transplants and not be classified under the unsustainable, outdated model that requires licensing as a drug with the Food and Drug Administration. Cellular transplantation has the potential to bring profound benefit through progress in bioengineering and regenerative medicine, limiting immunosuppression-related toxicity, and providing markedly reduced surgical morbidity.
Collapse
Affiliation(s)
- Ronald F Parsons
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Angeles Baquerizo
- Scripps Center for Cell and Organ Transplantation, La Jolla, California
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Sayeed Malek
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chirag S Desai
- Division of Transplantation, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Austin Schenk
- Division of Transplantation, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Erik B Finger
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Todd V Brennan
- Department of Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Malcolm MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Brayman
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jeffrey Fair
- Division of Transplant Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jason A Wertheim
- Departments of Surgery and Biomedical Engineering, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
36
|
C3 complement inhibition prevents antibody-mediated rejection and prolongs renal allograft survival in sensitized non-human primates. Nat Commun 2021; 12:5456. [PMID: 34526511 PMCID: PMC8443599 DOI: 10.1038/s41467-021-25745-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Sensitized kidney transplant recipients experience high rates of antibody-mediated rejection due to the presence of donor-specific antibodies and immunologic memory. Here we show that transient peri-transplant treatment with the central complement component C3 inhibitor Cp40 significantly prolongs median allograft survival in a sensitized nonhuman primate model. Despite donor-specific antibody levels remaining high, fifty percent of Cp40-treated primates maintain normal kidney function beyond the last day of treatment. Interestingly, presence of antibodies of the IgM class associates with reduced median graft survival (8 vs. 40 days; p = 0.02). Cp40 does not alter lymphocyte depletion by rhesus-specific anti-thymocyte globulin, but inhibits lymphocyte activation and proliferation, resulting in reduced antibody-mediated injury and complement deposition. In summary, Cp40 prevents acute antibody-mediated rejection and prolongs graft survival in primates, and inhibits T and B cell activation and proliferation, suggesting an immunomodulatory effect beyond its direct impact on antibody-mediated injury. Donor-specific antibodies in sensitized recipients may cause kidney transplant rejection. Here the authors show that complement component C3 inhibition prolongs graft survival by inhibiting T and B cell proliferation/activation and hence tissue injury, despite antibody levels remaining unaffected.
Collapse
|
37
|
The Association between Peri-Transplant RBC Transfusion and Graft Failure after Kidney Transplantation: A Nationwide Cohort Study. J Clin Med 2021; 10:jcm10163750. [PMID: 34442041 PMCID: PMC8397181 DOI: 10.3390/jcm10163750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Patients undergoing kidney transplantation (KT) often receive red blood cell (RBC) transfusion during admission for KT which may increase the risk of allosensitization. The association between peri-transplant RBC transfusion and graft survival was evaluated using a nationwide cohort. Methods: This retrospective study analyzed 13,871 patients who underwent KT in Korea between 2007 and 2015. The outcomes were graft failure rate and overall patient survival depending on the amount of RBC transfusion. Results: The overall graft failure rate was 15.5%. Compared to the graft failure rate of 13.5% in the no transfusion group, the graft failure rate was 15.4% in the 1–2 units group (sHR 1.06 (95% CI 0.97–1.17), p = 0.216), 21.4% in the 3–5 units group (sHR 1.39 (1.21–1.61), p < 0.001), and 35.3% in the 6 or more units group (sHR 2.20 (1.70–2.85), p < 0.001). The overall survival rate was 97.5% in the no transfusion group, compared to 95.9% in the 1–2 units group (HR 1.50 (1.22–1.83), p < 0.001), 92.0% in the 3–5 units group (HR 2.43 (1.87–3.15), p < 0.001), and 67.5% in the 6 or more units group (HR 6.81 (5.03–9.22), p < 0.001). Conclusions: Peri-transplant RBC transfusion was independently associated with the increased risk of renal allograft failure and death in KT patients.
Collapse
|
38
|
Rosser C, Sage D. Approaches for the characterization of clinically relevant pre-transplant human leucocyte antigen (HLA) antibodies in solid organ transplant patients. Int J Immunogenet 2021; 48:385-402. [PMID: 34346180 DOI: 10.1111/iji.12552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
The avoidance of antibody-mediated rejection (AMR) attributed to human leucocyte antigen (HLA) antibody incompatibility remains an essential function of clinical Histocompatibility and Immunogenetics (H&I) laboratories who are supporting solid organ transplantation. Developments in HLA antibody identification assays over the past thirty years have greatly reduced unexpected positive cellular crossmatches and improved solid organ transplant outcomes. For sensitized patients, the decision to register unacceptable HLA antigen mismatches is often heavily influenced by results from solid phase antibody assays, particularly the Luminex® Single Antigen Bead (SAB) assays, although the clinical relevance of antibodies identified solely by these assays remains unclear. As such, the identification of non-clinically relevant antibodies may proportionally increase the number of unacceptable transplant mismatches registered, with an associated increase in waiting time for a compatible organ. We reflect on the clinical relevance of antibodies identified solely by the Luminex SAB® assays and consider whether the application of additional assays and/or tools could further develop our ability to define the clinical relevance of antibodies identified in patient sera. Improvements in this area would assist equity of access to a compatible transplant for highly sensitized patients awaiting a solid organ transplant.
Collapse
Affiliation(s)
- Carla Rosser
- NHS Blood and Transplant (Tooting), Histocompatibility and Immunogenetics, London, UK
| | - Deborah Sage
- NHS Blood and Transplant (Tooting), Histocompatibility and Immunogenetics, London, UK
| |
Collapse
|
39
|
Establishment of HLA class I and MICA/B null HEK-293T panel expressing single MICA alleles to detect anti-MICA antibodies. Sci Rep 2021; 11:15716. [PMID: 34344955 PMCID: PMC8333366 DOI: 10.1038/s41598-021-95058-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 12/05/2022] Open
Abstract
Pre- and post-transplantation anti-MICA antibody detection development are associated with an increased rejection risk and low graft survival. We previously generated HLA class I null HEK-293T using CRISPR/Cas9, while MICA and MICB genes were removed in this study. A panel of 11 cell lines expressing single MICA alleles was established. Anti-MICA antibody in the sera of kidney transplant patients was determined using flow cytometric method (FCM) and the Luminex method. In the 44 positive sera, the maximum FCM value was 2879 MFI compared to 28,135 MFI of Luminex method. Eleven sera (25%) were determined as positive by FCM and 32 sera (72%) were positive by the Luminex method. The sum of total MICA antigens, MICA*002, *004, *009, *019, and *027 correlation showed a statistically significant between the two methods (P = 0.0412, P = 0.0476, P = 0.0019, P = 0.0098, P = 0.0467, and P = 0.0049). These results demonstrated that HEK-293T-based engineered cell lines expressing single MICA alleles were suitable for measuring specific antibodies against MICA antigens in the sera of transplant patients. Studies of antibodies to MICA antigens may help to understand responses in vivo and increase clinical relevance at the cellular level such as complement-dependent cytotoxicity.
Collapse
|
40
|
Ladowski JM, Houp J, Hauptfeld-Dolejsek V, Javed M, Hara H, Cooper DKC. Aspects of histocompatibility testing in xenotransplantation. Transpl Immunol 2021; 67:101409. [PMID: 34015463 PMCID: PMC8197754 DOI: 10.1016/j.trim.2021.101409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
Xenotransplantation, using genetically-modified pigs for clinical organ transplantation, is a solution to the organ shortage. The biggest barrier to clinical implementation is the antigenicity of pig cells. Humans possess preformed antibody to pig cells that initiate antibody-mediated rejection of pig organs in primates. Advances in genetic engineering have led to the development of a pig lacking the three known glycan xenoantigens (triple-knockout [TKO] pigs). A significant number of human sera demonstrate no antibody binding to TKO pig cells. As a result of the TKO pig's low antigen expression, survival of life-supporting pig organs in immunosuppressed nonhuman primates has significantly increased, and hope has been renewed for clinical trials of xenotransplantation. It is important to understand the context in which xenotransplantation's predecessor, allotransplantation, has been successful, and the steps needed for the success of xenotransplantation. Successful allotransplantation has been based on two main immunological approaches - (i) adequate immunosuppressive therapy, and (ii) careful histocompatibility matching. In vivo studies suggest that the available immunosuppressive regimens are adequate to suppress the human anti-pig cellular response. Methods to evaluate and screen patients for the first clinical xenotransplantation trial are the next challenge. The goal of this review is to summarize the history of histocompatibility testing, and the available tools that can be utilized to determine xenograft histocompatibility.
Collapse
Affiliation(s)
- Joseph M Ladowski
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie Houp
- Histocompatibility Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mariyam Javed
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
41
|
Rossi AP, Alloway RR, Hildeman D, Woodle ES. Plasma cell biology: Foundations for targeted therapeutic development in transplantation. Immunol Rev 2021; 303:168-186. [PMID: 34254320 DOI: 10.1111/imr.13011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Solid organ transplantation is a life-saving procedure for patients with end-stage organ disease. Over the past 70 years, tremendous progress has been made in solid organ transplantation, particularly in T-cell-targeted immunosuppression and organ allocation systems. However, humoral alloimmune responses remain a major challenge to progress. Patients with preexisting antibodies to human leukocyte antigen (HLA) are at significant disadvantages in regard to receiving a well-matched organ, moreover, those who develop anti-HLA antibodies after transplantation face a significant foreshortening of renal allograft survival. Historical therapies to desensitize patients prior to transplantation or to treat posttransplant AMR have had limited effectiveness, likely because they do not significantly reduce antibody levels, as plasma cells, the source of antibody production, remain largely unaffected. Herein, we will discuss the significance of plasma cells in transplantation, aspects of their biology as potential therapeutic targets, clinical challenges in developing strategies to target plasma cells in transplantation, and lastly, novel approaches that have potential to advance the field.
Collapse
Affiliation(s)
- Amy P Rossi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rita R Alloway
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
42
|
Tambur AR, Kosmoliaptsis V, Claas FHJ, Mannon RB, Nickerson P, Naesens M. Significance of HLA-DQ in kidney transplantation: time to reevaluate human leukocyte antigen matching priorities to improve transplant outcomes? An expert review and recommendations. Kidney Int 2021; 100:1012-1022. [PMID: 34246656 DOI: 10.1016/j.kint.2021.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
The weight of human leukocyte antigen (HLA) matching in kidney allocation algorithms, especially in the United States, has been devalued in a stepwise manner, supported by the introduction of modern immunosuppression. The intent was further to reduce the observed ethnic/racial disparity, as data emerged associating HLA matching with decreased access to transplantation for African American patients. In recent years, it has been increasingly recognized that a leading cause of graft loss is chronic antibody-mediated rejection, attributed to the development of de novo antibodies against mismatched donor HLA expressed on the graft. These antibodies are most frequently against donor HLA-DQ molecules. Beyond their impact on graft survival, generation of de novo donor-specific HLA antibodies also leads to increased sensitization, as measured by panel-reactive antibody metrics. Consequently, access to transplantation for patients returning to the waitlist in need of a second transplant is compromised. Herein, we address the implications of reduced HLA matching policies in kidney allocation. We highlight the observed diminished outcome data, the significant financial burden, the long-term health consequences, and, more important, the unintended consequences. We further provide recommendations to examine the impact of donor-recipient HLA class II and specifically HLA-DQα1β1 mismatching, focusing on collection of appropriate data, application of creative simulation approaches, and reconsideration of best practices to reduce inequalities while optimizing patient outcomes.
Collapse
Affiliation(s)
- Anat R Tambur
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA.
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Cambridge, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Romphruk AV, Simtong P, Suntornnipat J, Sudwilai Y, Cheunta S, Chan-On C, Leelayuwat C. Prevalence and impact of HLA and MICA allele mismatching on donor-specific antibodies induction in kidney transplant rejection. Nephrology (Carlton) 2021; 26:833-841. [PMID: 34197005 DOI: 10.1111/nep.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
AIM Donor-recipient antigen mismatching for anti-human leucocyte antigen (HLA) and MICA is one of the risk factors for antibody induction leading to graft rejection. Our aim was to analyze the incidence and specificity of the different DSAs developing and to investigate the impact of HLA and MICA allele mismatches on antibody production in kidney transplant patients experiencing antibody-mediated rejection (AMR). METHODS We retrospectively reviewed 253 consecutive recipients of kidney transplant who were diagnosed as experiencing AMR. RESULTS Our results showed that around 27% of our patients were positive for DSAs over a median follow-up period of 24 months. Antibody to HLA-DQ7 was the most prevalent DSA detected. The allele mismatch number was significantly lower for DQ loci than -A and -B loci (DQ vs. A, p < .001; DQ vs. B, p = .002). Considering each HLA antigen, the incidence rate of DQ-DSA [41.9 (32.92-51.46; 95%CI)] was much higher than the rate observed for DSA directed to -A, -DR and -B loci. Half of the recipients in the DQ-DSA-only group, and the DQ-DSA together with non-DQ group, had MFI > 5000. Only one case developed de novo MICA-DSA (MICA002). CONCLUSION Our study indicates that mismatching for HLA and MICA alleles leads to the development of HLA and MICA antibodies in some kidney transplant recipients. We have also demonstrated that DSA to the DQ locus is the most prevalent in kidney transplant patients with AMR. Thus, matching the DQ locus in kidney allocation algorithms may reduce post-transplant development of DSA.
Collapse
Affiliation(s)
- Amornrat V Romphruk
- Blood Transfusion Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Piyapong Simtong
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jidpinan Suntornnipat
- Biomedical Sciences Program, Faculty of Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Yupaporn Sudwilai
- Blood Transfusion Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Siriluk Cheunta
- Blood Transfusion Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chitranon Chan-On
- Internal Medicine Department, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
44
|
Measuring human leukocyte antigen alloantibodies: beyond a binary decision. Curr Opin Organ Transplant 2021; 25:529-535. [PMID: 33055530 DOI: 10.1097/mot.0000000000000822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Accurate measurement of human leukocyte antigen antibodies is critical for making clinical decisions treating patients awaiting transplantation or monitoring them post transplantation. Single antigen bead assay results are given as Mean Fluorescence Intensity, falling short of providing the required quantitative measure. RECENT FINDINGS Titration studies were shown to circumvent the limitation of target-saturation that affect interpretation of single antigen bead assays especially in highly sensitized patients with strong antibodies. In fact, titration information can serve to measure efficacy of antibody removal during pretransplant desensitization using plasmapheresis/intravenous immunoglobulin (PP/IVIg) approaches. Moreover, recent studies indicate that knowing the donor-specific antibody titer has prognostic value that can guide PP/IVIg desensitization treatments. Newer data demonstrates an additional layer of information obtained by titration studies allowing to stratify patients with very high cPRA (>99%) based on the strength of the antibodies present, rather than the breadth. This data can thereby identify patients that are more likely to benefit from desensitization approaches on the transplant wait-list. SUMMARY Titration studies have a prognostic value with regards to quantifying antibody strength. Obtaining this information does not require performing the complete set of dilutions. In fact, performing two to three specific dilutions can provide relevant information while maintaining practical cost.
Collapse
|
45
|
Lemin AJ, Foster L. HLA-DPB1 allele frequencies in the West Midlands region of the United Kingdom: A critical evaluation against the common, intermediate and well-documented allele catalogues CWD 2.0.0, EFI CWD and CIWD 3.0.0. HLA 2021; 98:5-13. [PMID: 33934529 DOI: 10.1111/tan.14291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/27/2021] [Indexed: 01/08/2023]
Abstract
The Birmingham H&I laboratory performed HLA typing on 456 potential deceased solid organ donors in the UK between 2014 and 2016. Accurate DPB1 typing is essential for determining HLA compatibility in transplantation, thus we report HLA-DPB1 for potential deceased solid organ donors. To correctly interpret HLA typing data, laboratories must understand both international and local HLA allele frequencies. In this analysis, we determined HLA-DPB1 allele and genotype frequencies for these 456 donors. HLA-DPB1 diversity was evaluated against the common and well-documented (CWD) alleles 2.0.0 catalogue, the European Federation for Immunogenetics (EFI) CWD catalogue and the common, intermediate and well-documented (CIWD) 3.0.0 catalogue. Additionally, we determined which alleles are common in our local deceased donor population. We observed 27 HLA-DPB1 alleles with DPB1*04:01 being the most frequently observed (allele frequency = 0.4342). All alleles detected locally were present in CIWD 3.0.0, however, DPB1*124:01 and *135:01 were not present in CWD 2.0.0 and DPB1*104:01 and *135:01 were not present in EFI CWD. Twenty of 27 DPB1 alleles identified were defined as locally common and also listed as common in CIWD 3.0.0 representing 62.5% of common alleles in the subset of CIWD 3.0.0 from individuals of a European geographic, ancestral or ethnic background. The alleles HLA-DPB1*16:01 and *20:01 are locally common but not listed as common in EFI CWD and DPB1*104:01 is not listed as common in CWD 2.0.0 catalogue. Our analysis showed that the detected alleles and locally common alleles within our population were aligned with the CIWD 3.0.0 catalogue.
Collapse
Affiliation(s)
- Andrew James Lemin
- Department of Histocompatibility and Immunogenetics, NHS Blood and Transplant, Birmingham, UK
| | - Luke Foster
- Department of Histocompatibility and Immunogenetics, NHS Blood and Transplant, Birmingham, UK
| |
Collapse
|
46
|
Legaz I, Bernardo MV, Alfaro R, Martínez-Banaclocha H, Galián JA, Jimenez-Coll V, Boix F, Mrowiec A, Salmeron D, Botella C, Parrado A, Moya-Quiles MR, Minguela A, Llorente S, de la Peña-Moral J, Muro M. PCR Array Technology in Biopsy Samples Identifies Up-Regulated mTOR Pathway Genes as Potential Rejection Biomarkers After Kidney Transplantation. Front Med (Lausanne) 2021; 8:547849. [PMID: 33681239 PMCID: PMC7927668 DOI: 10.3389/fmed.2021.547849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Antibody-mediated rejection (AMR) is the major cause of kidney transplant rejection. The donor-specific human leukocyte antigen (HLA) antibody (DSA) response to a renal allograft is not fully understood yet. mTOR complex has been described in the accommodation or rejection of transplants and integrates responses from a wide variety of signals. The aim of this study was to analyze the expression of the mTOR pathway genes in a large cohort of kidney transplant patients to determine its possible influence on the transplant outcome. Methods: A total of 269 kidney transplant patients monitored for DSA were studied. The patients were divided into two groups, one with recipients that had transplant rejection (+DSA/+AMR) and a second group of recipients without rejection (+DSA/-AMR and -DSA/-AMR, controls). Total RNA was extracted from kidney biopsies and reverse transcribed to cDNA. Human mTOR-PCR array technology was used to determine the expression of 84 mTOR pathway genes. STRING and REVIGO software were used to simulate gene to gene interaction and to assign a molecular function. Results: The studied groups showed a different expression of the mTOR pathway related genes. Recipients that had transplant rejection showed an over-expressed transcript (≥5-fold) of AKT1S1, DDIT4, EIF4E, HRAS, IGF1, INS, IRS1, PIK3CD, PIK3CG, PRKAG3, PRKCB (>12-fold), PRKCG, RPS6KA2, TELO2, ULK1, and VEGFC, compared with patients that did not have rejection. AKT1S1 transcripts were more expressed in +DSA/-AMR biopsies compared with +DSA/+AMR. The main molecular functions of up-regulated gene products were phosphotransferase activity, insulin-like grown factor receptor and ribonucleoside phosphate binding. The group of patients with transplant rejection also showed an under-expressed transcript (≥5-fold) of VEGFA (>15-fold), RPS6, and RHOA compared with the group without rejection. The molecular function of down-regulated gene products such as protein kinase activity and carbohydrate derivative binding proteins was also analyzed. Conclusions: We have found a higher number of over-expressed mTOR pathway genes than under-expressed ones in biopsies from rejected kidney transplants (+DSA/+AMR) with respect to controls. In addition to this, the molecular function of both types of transcripts (over/under expressed) is different. Therefore, further studies are needed to determine if variations in gene expression profiles can act as predictors of graft loss, and a better understanding of the mechanisms of action of the involved proteins would be necessary.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Faculty of Medicine, Biomedical Research Institute (IMIB), University of Murcia, Murcia, Spain
| | - María Victoria Bernardo
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Rafael Alfaro
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Helios Martínez-Banaclocha
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jose Antonio Galián
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Victor Jimenez-Coll
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco Boix
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Anna Mrowiec
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Diego Salmeron
- Departamento de Ciencias Sociosanitarias, Universidad de Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red (CIBER) Epidemiología y Salud Pública (CIBERESP), Murcia, Spain
- Instituto Murciano de Investigacion Biomédica-Arrixaca, Murcia, Spain
| | - Carmen Botella
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Antonio Parrado
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María Rosa Moya-Quiles
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Santiago Llorente
- Department of Nephrology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jesús de la Peña-Moral
- Department of Pathology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Manuel Muro
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
47
|
Yu S, Huh HJ, Lee KW, Park JB, Kim SJ, Huh W, Jang HR, Kwon GY, Moon HH, Kang ES. Pre-Transplant Angiotensin II Type 1 Receptor Antibodies and Anti-Endothelial Cell Antibodies Predict Graft Function and Allograft Rejection in a Low-Risk Kidney Transplantation Setting. Ann Lab Med 2021; 40:398-408. [PMID: 32311853 PMCID: PMC7169631 DOI: 10.3343/alm.2020.40.5.398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Background Non-HLA antibodies, anti-angiotensin II type 1 receptor antibodies (anti-AT1R) and anti-endothelial cell antibodies (AECA), are known to play a role in allograft rejection. We evaluated the role of both antibodies in predicting post-transplant outcomes in low-risk living donor kidney transplantation (LDKT) recipients. Methods In 94 consecutive LDKT recipients who were ABO compatible and negative for pre-transplant HLA donor-specific antibodies, we determined the levels of anti-AT1Rs using an enzyme-linked immunosorbent assay and the presence of AECAs using a flow cytometric endothelial cell crossmatch (ECXM) assay with pre-transplant sera. Hazard ratio (HR) was calculated to predict post-transplant outcomes. Results Pre-transplant anti-AT1Rs (≥11.5 U/mL) and AECAs were observed in 36 (38.3%) and 22 recipients (23.4%), respectively; 11 recipients had both. Pre-transplant anti-AT1Rs were a significant risk factor for the development of acute rejection (AR) (HR 2.09; P=0.018), while a positive AECA status was associated with AR or microvascular inflammation only (HR 2.47; P=0.004) throughout the follow-up period. In particular, AECA (+) recipients with ≥11.5 U/mL anti-AT1Rs exhibited a significant effect on creatinine and estimated glomerular filtration rate (P<0.001; P=0.028), although the risk of AR was not significant. Conclusions Pre-transplant anti-AT1Rs and AECAs have independent negative effects on post-transplant outcomes in low-risk LDKT recipients. Assessment of both antibodies would be helpful in stratifying the pre-transplant immunological risk, even in low-risk LDKT recipients.
Collapse
Affiliation(s)
- Shinae Yu
- Department of Laboratory Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyo Won Lee
- Department of Surgery, Sungkyunkwan University School of Medicine, Seoul, Korea.,Organ Transplantation Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Berm Park
- Department of Surgery, Sungkyunkwan University School of Medicine, Seoul, Korea.,Organ Transplantation Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Joo Kim
- Department of Surgery, Sungkyunkwan University School of Medicine, Seoul, Korea.,Organ Transplantation Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wooseong Huh
- Organ Transplantation Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Ryoun Jang
- Organ Transplantation Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyung Hwan Moon
- Department of Surgery Kosin University Gospel Hospital, Medical College of Kosin University, Busan, Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, Korea.,Organ Transplantation Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Bath NM, Djamali A, Parajuli S, Mandelbrot D, Leverson G, Hidalgo L, Ellis T, Descourouez JL, Jorgenson MR, Hager D, Kaufman DB, Redfield RR. Induction and Donor Specific Antibodies in Low Immunologic Risk Kidney Transplant Recipients. KIDNEY360 2020; 1:1407-1418. [PMID: 35372884 DOI: 10.34067/kid.0000122020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Background Optimal induction for patients without pretransplant donor-specific antibodies (DSAs) is poorly defined. The goal of this study was to compare the incidence of de novo DSA (dnDSA) and graft outcomes between induction therapies in patients with a negative virtual crossmatch (VXM). Methods A retrospective chart review was performed, identifying 782 patients with a negative VXM who underwent kidney transplantation at a single, high-volume institution between January 2013 and May 2017. Kaplan-Meier analysis was used to assess the incidence of dnDSA and allograft survival between induction therapies in this group. dnDSA is defined as the development of new post-transplant DSA, at any MFI level. Results Induction therapy included alemtuzumab (N=87, 11%), basiliximab (N=522, 67%), and anti-thymocyte globulin (ATG; N=173, 22%). One-year graft survival was similar between groups (alemtuzumab, 100%; basiliximab, 98%; ATG, 99%). Incidence of acute rejection at 1 year was <2% and not different between the three groups. Alemtuzumab was associated with the highest incidence of dnDSA at 14%, compared with 5% and 8% in basiliximab and ATG groups, respectively, at 1 year (P=0.009). In multivariate regression analyses, alemtuzumab retained its significant association with a dnDSA HR of 2.5 (95% CI, 1.51 to 4.25; P=0.0004). Conclusions In summary, alemtuzumab was associated with a higher rate of dnDSA development in patients with a negative VXM; however, this finding was not associated with rejection or graft failure.
Collapse
Affiliation(s)
- Natalie M Bath
- Division of Transplant, Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Didier Mandelbrot
- Division of Nephrology, Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Glen Leverson
- Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Luis Hidalgo
- Division of Transplant, Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Thomas Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Jillian L Descourouez
- Division of Transplant, Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Margaret R Jorgenson
- Division of Transplant, Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Dave Hager
- Division of Transplant, Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Dixon B Kaufman
- Division of Transplant, Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Robert R Redfield
- Division of Transplant, Department of Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| |
Collapse
|
49
|
Car H, Karahan GE, Dreyer GJ, Brand-Schaaf SH, de Vries APJ, van Kooten C, Kramer CSM, Roelen DL, Claas FHJ, Heidt S. Low incidence of IgA isotype of HLA antibodies in alloantigen exposed individuals. HLA 2020; 97:101-111. [PMID: 33227174 PMCID: PMC7898292 DOI: 10.1111/tan.14146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 11/30/2022]
Abstract
Human leukocyte antigen (HLA) antibodies are induced by pregnancy, transfusion, or transplantation. Serum from transplant recipients is regularly screened for IgG HLA antibodies because of their clinical relevance for transplant outcome. While other isotypes of HLA antibodies, such as IgA may also contribute to the alloimmune response, validated detection assays for IgA HLA antibody detection are lacking. Therefore, we modified the commonly used luminex screening assay for IgG HLA antibody detection (IgG-LMX) into an IgA HLA antibody screening assay (IgA-LMX). Optimization and validation was performed with IgG, IgA1, and IgA2 isotype variants of HLA-specific human recombinant monoclonal antibodies (mAbs). Reactivity patterns of IgA1 and IgA2 isotype HLA-specific mAbs in IgA-LMX were identical to those of the IgG isotype. Cross-reactivity with IgG and IgM antibodies and nonspecific binding to the beads were excluded. Further assay validation showed the absence of IgA HLA antibodies in serum from individuals without alloantigen exposure (n = 18). When the IgA-LMX assay was applied to sera from 289 individuals with known alloantigen exposure through pregnancy (n = 91) or kidney transplantation (n = 198), IgA HLA antibodies were detected in 3.5% of individuals; eight patients on the kidney retransplant waitlist and two women immunized through pregnancy. The majority (90%) of IgA HLA antibodies were directed against HLA class II and were always present in conjunction with IgG HLA antibodies. Results of this study show that this validated IgA-LMX method can serve as a screening assay for IgA HLA antibodies and that the incidence of IgA HLA antibodies in alloantigen exposed individuals is low.
Collapse
Affiliation(s)
- Helena Car
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonca E Karahan
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Geertje J Dreyer
- Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands.,Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone H Brand-Schaaf
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Aiko P J de Vries
- Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands.,Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands.,Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cynthia S M Kramer
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dave L Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
50
|
Bekbolsynov D, Mierzejewska B, Borucka J, Liwski RS, Greenshields AL, Breidenbach J, Gehring B, Leonard-Murali S, Khuder SA, Rees M, Green RC, Stepkowski SM. Low Hydrophobic Mismatch Scores Calculated for HLA-A/B/DR/DQ Loci Improve Kidney Allograft Survival. Front Immunol 2020; 11:580752. [PMID: 33193383 PMCID: PMC7659444 DOI: 10.3389/fimmu.2020.580752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
We evaluated the impact of human leukocyte antigen (HLA) disparity (immunogenicity; IM) on long-term kidney allograft survival. The IM was quantified based on physicochemical properties of the polymorphic linear donor/recipient HLA amino acids (the Cambridge algorithm) as a hydrophobic, electrostatic, amino acid mismatch scores (HMS\AMS\EMS) or eplet mismatch (EpMM) load. High-resolution HLA-A/B/DRB1/DQB1 types were imputed to calculate HMS for primary/re-transplant recipients of deceased donor transplants. The multiple Cox regression showed the association of HMS with graft survival and other confounders. The HMS integer 0–10 scale showed the most survival benefit between HMS 0 and 3. The Kaplan–Meier analysis showed that: the HMS=0 group had 18.1-year median graft survival, a 5-year benefit over HMS>0 group; HMS ≤ 3.0 had 16.7-year graft survival, a 3.8-year better than HMS>3.0 group; and, HMS ≤ 7.8 had 14.3-year grafts survival, a 1.8-year improvement over HMS>7.8 group. Stratification based on EMS, AMS or EpMM produced similar results. Additionally, the importance of HLA-DR with/without -DQ IM for graft survival was shown. In our simulation of 1,000 random donor/recipient pairs, 75% with HMS>3.0 were re-matched into HMS ≤ 3.0 and the remaining 25% into HMS≥7.8: after re-matching, the 13.5 years graft survival would increase to 16.3 years. This approach matches donors to recipients with low/medium IM donors thus preventing transplants with high IM donors.
Collapse
Affiliation(s)
- Dulat Bekbolsynov
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, United States
| | - Beata Mierzejewska
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, United States
| | | | - Robert S Liwski
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Joshua Breidenbach
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, United States
| | - Bradley Gehring
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, United States
| | | | - Sadik A Khuder
- Department of Medicine and Public Health, University of Toledo, Toledo, OH, United States
| | - Michael Rees
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, United States.,Department of Urology, University of Toledo College of Medicine, Toledo, OH, United States.,The Alliance for Paired Donation, Maumee, OH, United States
| | - Robert C Green
- Department of Computer Science, Bowling Green State University, Bowling Green, OH, United States
| | - Stanislaw M Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, United States
| |
Collapse
|