1
|
Vanaveski T, Narvik J, Innos J, Philips MA, Ottas A, Plaas M, Haring L, Zilmer M, Vasar E. Repeated Administration of D-Amphetamine Induces Distinct Alterations in Behavior and Metabolite Levels in 129Sv and Bl6 Mouse Strains. Front Neurosci 2018; 12:399. [PMID: 29946233 PMCID: PMC6005828 DOI: 10.3389/fnins.2018.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/24/2018] [Indexed: 01/30/2023] Open
Abstract
The main goal of the study was to characterize the behavioral and metabolomic profiles of repeated administration (for 11 days) of d-amphetamine (AMPH, 3 mg/kg i. p.), indirect agonist of dopamine (DA), in widely used 129S6/SvEvTac (129Sv) and C57BL/6NTac (Bl6) mouse strains. Acute administration of AMPH (acute AMPH) induced significantly stronger motor stimulation in Bl6. However, repeated administration of AMPH (repeated AMPH) caused stronger motor sensitization in 129Sv compared acute AMPH. Body weight of 129Sv was reduced after repeated saline and AMPH, whereas no change occurred in Bl6. In the metabolomic study, acute AMPH induced an elevation of isoleucine and leucine, branched chain amino acids (BCAA), whereas the level of hexoses was reduced in Bl6. Both BCAAs and hexoses remained on level of acute AMPH after repeated AMPH in Bl6. Three biogenic amines [asymmetric dimethylarginine (ADMA), alpha-aminoadipic acid (alpha-AAA), kynurenine] were significantly reduced after repeated AMPH. Acute AMPH caused in 129Sv a significant reduction of valine, lysophosphatidylcholines (lysoPC a C16:0, lysoPC a C18:2, lysoPC a C20:4), phosphatidylcholine (PC) diacyls (PC aa C34:2, PC aa C36:2, PC aa C36:3, PC aa C36:4) and alkyl-acyls (PC ae C38:4, PC ae C40:4). However, repeated AMPH increased the levels of valine and isoleucine, long-chain acylcarnitines (C14, C14:1-OH, C16, C18:1), PC diacyls (PC aa C38:4, PC aa C38:6, PC aa C42:6), PC acyl-alkyls (PC ae C38:4, PC ae C40:4, PC ae C40:5, PC ae C40:6, PC ae C42:1, PC ae C42:3) and sphingolipids [SM(OH)C22:1, SM C24:0] compared to acute AMPH in 129Sv. Hexoses and kynurenine were reduced after repeated AMPH compared to saline in 129Sv. The established changes probably reflect a shift in energy metabolism toward lipid molecules in 129Sv because of reduced level of hexoses. Pooled data from both strains showed that the elevation of isoleucine and leucine was a prominent biomarker of AMPH-induced behavioral sensitization. Simultaneously a significant decline of hexoses, citrulline, ADMA, and kynurenine occurred. The reduced levels of kynurenine, ADMA, and citrulline likely reflect altered function of N-methyl-D-aspartate (NMDA) and NO systems caused by repeated AMPH. Altogether, 129Sv strain displays stronger sensitization toward AMPH and larger variance in metabolite levels than Bl6.
Collapse
Affiliation(s)
- Taavi Vanaveski
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jane Narvik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aigar Ottas
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mario Plaas
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic and Center of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liina Haring
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mihkel Zilmer
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Olanzapine and risperidone disrupt conditioned avoidance responding in phencyclidine-pretreated or amphetamine-pretreated rats by selectively weakening motivational salience of conditioned stimulus. Behav Pharmacol 2009; 20:84-98. [PMID: 19179852 DOI: 10.1097/fbp.0b013e3283243008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rat conditioned avoidance response model is a well-established preclinical behavioral model predictive of antipsychotic efficacy. All clinically approved antipsychotic drugs disrupt conditioned avoidance responding - a feature that distinguishes them from other psychotherapeutics. We previously showed that the typical antipsychotic drug haloperidol disrupts avoidance responding by progressively attenuating the motivational salience of the conditioned stimulus (CS) in normal rats. In this study, using two pharmacological rat models of schizophrenia [e.g. phencyclidine (PCP) or amphetamine sensitization], we examined whether atypicals such as olanzapine or risperidone disrupt avoidance responding through the same behavioral mechanism. Rats were first pretreated with PCP, amphetamine, or saline under one of two different injection schedules for either 1 or 3 weeks. They were then trained to acquire avoidance responding to two types of CS (CS1 and CS2) that differed in their ability to predict the occurrence of the unconditioned stimulus. Finally, rats were tested repeatedly under olanzapine (1.0 mg/kg, subcutaneously) or risperidone (0.33 mg/kg, subcutaneously) daily for 5 or 7 consecutive days. We found that repeated olanzapine or risperidone treatment produced a progressive across-session decline in avoidance responding to both CS1 and CS2. Olanzapine and risperidone disrupted the CS2 (a less salient CS) avoidance to a greater extent than the CS1 avoidance. Pretreatment with PCP and amphetamine did not affect the disruptive effect of olanzapine or risperidone on avoidance responding. On the basis of these findings, we suggest that the atypical drugs olanzapine and risperidone, like the typical drug haloperidol, also disrupt avoidance responding primarily by attenuating the motivational salience of the CS.
Collapse
|
3
|
Malkoff A, Weizman A, Gozes I, Rehavi M. Decreased M1 muscarinic receptor density in rat amphetamine model of schizophrenia is normalized by clozapine, but not haloperidol. J Neural Transm (Vienna) 2008; 115:1563-71. [PMID: 18806925 DOI: 10.1007/s00702-008-0122-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
Abstract
There is increasing evidence supporting the involvement of the muscarinic-cholinergic system in schizophrenia. We examined the M1 muscarinic receptor density and mRNA expression in brains of a rat amphetamine model of schizophrenia. We also assessed the effect of the model and chronic treatment with haloperidol and clozapine on brain M1 receptor density and gene expression. A significant decrease of about 20% in the density of M1 receptor was detected in the cortex and in the striatum of amphetamine model rats. A significant increase of 33% in the density of the M1 receptor was found in the cortex and striatum of rats treated chronically with clozapine (0.5 mg/kg), but not with haloperidol (25 mg/kg). Chronic clozapine, but not haloperidol, normalized the decrease in M1 receptors observed in amphetamine model rats, in both cortex and striatum. Regulation of the M1 receptor may occur in a post-transcriptional phase. Our findings suggest involvement of both dopaminergic and cholinergic-muscarinic systems in the pathophysiology and pharmacotherapy of schizophrenia.
Collapse
Affiliation(s)
- Adi Malkoff
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
4
|
Kitanaka J, Kitanaka N, Takemura M. Neurochemical consequences of dysphoric state during amphetamine withdrawal in animal models: a review. Neurochem Res 2007; 33:204-19. [PMID: 17605106 DOI: 10.1007/s11064-007-9409-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Chronic abuse of amphetamines, such as d-amphetamine (AMPH) and d-methamphetamine, results in psychological dependence, a condition in which the drug produces a feeling of satisfaction and a drive that requires periodic or continuous administration of the drug to produce overwhelming pleasure or to avoid discomfort such as dysphoria. The dysphoric state of AMPH withdrawal has been recognized as depressive syndromes, such as anhedonia, depression, anxiety, and social inhibition, in early drug abstinence. Medication for treatment of the dysphoric state is important for AMPH abusers to avoid impulsive self-injurious behavior or acts that are committed with unconscious or uncontrolled suicidal ideation. However, successful treatments for AMPH withdrawal remain elusive, since the exact molecular basis of the expression of dysphoria has not been fully elucidated. This review focuses on the molecular aspects of AMPH withdrawal as indexed by neurochemical parameters under a variety of injection regimens (for example, levels of brain monoamines and their metabolites, and gamma-aminobutyric acid, expression of genes and proteins involved in neuronal activity, and monoamine metabolism and availability) in rodent models which exhibit significant phenotypic features relevant to the syndromes of AMPH withdrawal in humans.
Collapse
Affiliation(s)
- Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | |
Collapse
|
5
|
Abstract
Psychostimulant drugs such as amphetamine are prescribed to increase vigilance, suppress appetite, and treat attention disorders, but they powerfully activate the dopamine system and have serious abuse potential. Repeated psychostimulant exposure induces neuronal plasticity within the mesolimbic dopamine system. Here we present evidence that repeated amphetamine exposure results in a suppression of intrinsic neuronal excitability in the ventral subiculum, a hippocampal region that activates dopamine neurotransmission. We used patch-clamp recordings from brain slices obtained at different times after withdrawal from repeated amphetamine exposure to determine the long-term effects of amphetamine on subicular excitability. Using several postsynaptic indices of sodium channel function, our results show that excitability is decreased for days, but not weeks, after repeated amphetamine exposure. The resulting increase in action potential threshold and decrease in postsynaptic amplification of excitatory synaptic input provide the first direct evidence that psychostimulants induce plasticity of hippocampal output and suggest one mechanism by which drug withdrawal may influence limbic dopamine-dependent learning and memory.
Collapse
|