1
|
Easton A, Barros M, Lever C. Acetylcholine and Spontaneous Recognition Memory in Rodents and Primates. Curr Top Behav Neurosci 2020; 45:29-45. [PMID: 32462614 DOI: 10.1007/7854_2020_132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whilst acetylcholine has long been linked to memory, there have been significant questions about its specific role. In particular, the effects of cholinergic manipulations in primates and rodents has often been at odds. Here, we review the work in primates and rodents on the specific function of acetylcholine in memory, and episodic memory in particular. We propose that patterns of impairment can best be understood in terms of a role for hippocampal acetylcholine in resolving spatial interference and we discuss the benefits of new tasks of episodic memory in animals allowing clearer translation of findings to the clinic.
Collapse
Affiliation(s)
- Alexander Easton
- Department of Psychology, Durham University, Durham, UK. .,Learning and Memory Processes Centre, Durham University, Durham, UK.
| | - Marilia Barros
- Department of Pharmacy, University of Brasilia, Brasilia, Brazil
| | - Colin Lever
- Department of Psychology, Durham University, Durham, UK.,Learning and Memory Processes Centre, Durham University, Durham, UK
| |
Collapse
|
2
|
Tripathi S, Taneja P, Jha SK. Training on an Appetitive (Delay)-Conditioning Task Enhances Oscillatory Waves During Sleep in the Cortical and Amygdalar Network. Front Behav Neurosci 2018; 12:260. [PMID: 30464744 PMCID: PMC6234907 DOI: 10.3389/fnbeh.2018.00260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
Oscillating waves during sleep play an essential role in memory consolidation. The cortical slow wave activity (SWA) and sigma waves during NREM sleep and theta waves during REM sleep increase after a variety of memory tasks including declarative, procedural and associative learning tasks. These oscillatory waves during sleep help to promote neural dialog between circuitries, which possibly plays a causal role in memory consolidation. However, the role of sleep-associated oscillating waves in a complex appetitive-conditioning paradigm is not clear. The parietal cortex and amygdala are involved in the cognitive evaluation of the environmental stimuli, and appetitive conditioning. Here, we have studied the changes in sleep architecture and oscillatory waves during NREM and REM sleep in the parietal cortices and amygdalar-local field potential (A-LFP) after appetitive-conditioning in the rat. We observed that REM sleep increased significantly after appetitive conditioning, which significantly positively correlated with performance on the appetitive-conditioning task. Further, the cortical SWA (0.1-4.5 Hz), and sigma (12-14.25 Hz) waves during NREM sleep, theta (6-9 Hz) waves during REM sleep, the amygdalar SWA (0.1-3.75 Hz) during NREM sleep and theta (6-8.25 Hz) waves during REM sleep significantly increased after appetitive conditioning. Interestingly, the augmented oscillatory waves significantly positively correlated with the performances on the appetitive-conditioning task. Our results suggest that the augmented REM sleep after conditioning may be required for the consolidation of appetitive-conditioned memory. Further, a significant correlation between augmented power in oscillatory waves during sleep and performance suggesting that these waves may be playing a crucial role in the consolidation of appetitive-conditioned memory.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Alm KH, Rolheiser T, Olson IR. Inter-individual variation in fronto-temporal connectivity predicts the ability to learn different types of associations. Neuroimage 2016; 132:213-224. [PMID: 26908315 DOI: 10.1016/j.neuroimage.2016.02.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/10/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022] Open
Abstract
The uncinate fasciculus connects portions of the anterior and medial temporal lobes to the lateral orbitofrontal cortex, so it has long been thought that this limbic fiber pathway plays an important role in episodic memory. Some types of episodic memory are impaired after damage to the uncinate, while others remain intact. Because of this, the specific role played by the uncinate fasciculus in episodic memory remains undetermined. In the present study, we tested the hypothesis that the uncinate fasciculus is involved in episodic memory tasks that have high competition between representations at retrieval. To test this hypothesis, healthy young adults performed three tasks: Experiment 1 in which they learned to associate names with faces through feedback provided at the end of each trial; Experiment 2 in which they learned to associate fractals with cued locations through feedback provided at the end of each trial; and Experiment 3 in which unique faces were remembered in a paradigm with low retrieval competition. Diffusion tensor imaging and deterministic tractography methods were used to extract measures of uncinate fasciculus microstructure. Results revealed that microstructural properties of the uncinate, but not a control tract, the inferior longitudinal fasciculus, significantly predicted individual differences in performance on the face-name and fractal-location tasks. However, no relationship was observed for simple face memory (Experiment 3). These findings suggest that the uncinate fasciculus may be important for adjudicating between competing memory representations at the time of episodic retrieval.
Collapse
Affiliation(s)
- Kylie H Alm
- Temple University, Department of Psychology, United States
| | | | - Ingrid R Olson
- Temple University, Department of Psychology, United States.
| |
Collapse
|
4
|
Diffusion MRI properties of the human uncinate fasciculus correlate with the ability to learn visual associations. Cortex 2015; 72:65-78. [DOI: 10.1016/j.cortex.2015.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/25/2014] [Accepted: 01/29/2015] [Indexed: 01/14/2023]
|
5
|
Easton A, Douchamps V, Eacott M, Lever C. A specific role for septohippocampal acetylcholine in memory? Neuropsychologia 2012; 50:3156-68. [PMID: 22884957 PMCID: PMC3605586 DOI: 10.1016/j.neuropsychologia.2012.07.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 05/28/2012] [Accepted: 07/12/2012] [Indexed: 11/30/2022]
Abstract
Acetylcholine has long been implicated in memory, including hippocampal-dependent memory, but the specific role for this neurotransmitter is difficult to identify in human neuropsychology. Here, we review the evidence for a mechanistic model of acetylcholine function within the hippocampus and consider its explanatory power for interpreting effects resulting from both pharmacological anticholinergic manipulations and lesions of the cholinergic input to the hippocampus in animals. We argue that these effects indicate that acetylcholine is necessary for some, but not all, hippocampal-dependent processes. We review recent evidence from lesion, pharmacological and electrophysiological studies to support the view that a primary function of septohippocampal acetylcholine is to reduce interference in the learning process by adaptively timing and separating encoding and retrieval processes. We reinterpret cholinergic-lesion based deficits according to this view and propose that acetylcholine reduces the interference elicited by the movement of salient locations between events.
Collapse
Affiliation(s)
- Alexander Easton
- Department of Psychology, University of Durham, Durham, DH1 3LE, UK.
| | | | | | | |
Collapse
|
6
|
Easton A, Eacott MJ. Cholinergic mechanisms of episodic memory: what specific behavioural tasks can tell us about specific neural mechanisms. Brain Res Bull 2011; 92:21-8. [PMID: 21968024 DOI: 10.1016/j.brainresbull.2011.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/25/2011] [Accepted: 09/09/2011] [Indexed: 11/18/2022]
Abstract
Understanding the neural basis of episodic memory is crucial for understanding how to treat memory loss in normal ageing as well as in disorders such as Alzheimer's disease. However, it is only recently that episodic memory has been able to be reliably modelled in animals allowing the biological basis to be fully explored. Here we review studies on the role of the cholinergic basal forebrain on episodic memory, and highlight differences in findings from studies in monkeys and rats. The results highlight the importance of choosing appropriate behavioural models of cognitive processes in order to understand the neural basis of the processes accurately.
Collapse
Affiliation(s)
- Alexander Easton
- Department of Psychology, Durham University, Science Site, Durham DH1 3LE, UK.
| | | |
Collapse
|
7
|
Graham KS, Barense MD, Lee ACH. Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia 2010; 48:831-53. [PMID: 20074580 DOI: 10.1016/j.neuropsychologia.2010.01.001] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 12/08/2009] [Accepted: 01/01/2010] [Indexed: 12/28/2022]
Abstract
Studies in rats and non-human primates suggest that medial temporal lobe (MTL) structures play a role in perceptual processing, with the hippocampus necessary for spatial discrimination, and the perirhinal cortex for object discrimination. Until recently, there was little convergent evidence for analogous functional specialisation in humans, or for a role of the MTL in processes beyond long-term memory. A recent series of novel human neuropsychological studies, however, in which paradigms from the animal literature were adapted and extended, have revealed findings remarkably similar to those seen in rats and monkeys. These experiments have demonstrated differential effects of distinct stimulus categories on performance in tasks for which there was no explicit requirement to remember information across trials. There is also accruing complementary evidence from functional neuroimaging that MTL structures show differential patterns of activation for scenes and objects, even on simple visual discrimination tasks. This article reviews some of these key studies and discusses the implications of these new findings for existing accounts of memory. A non-modular view of memory is proposed in which memory and perception depend upon the same anatomically distributed representations (emergent memory account). The limitations and criticisms of this theory are discussed and a number of outstanding questions proposed, including key predictions that can be tested by future studies.
Collapse
Affiliation(s)
- Kim S Graham
- Wales Institute of Cognitive Neuroscience, School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK.
| | | | | |
Collapse
|
8
|
Easton A, Eacott MJ. Recollection of episodic memory within the medial temporal lobe: behavioural dissociations from other types of memory. Behav Brain Res 2009; 215:310-7. [PMID: 19850082 DOI: 10.1016/j.bbr.2009.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
In recent years there has been significant debate about whether there is a single medial temporal lobe memory system or dissociable systems for episodic and other types of declarative memory. In addition there has been a similar debate over the dissociability of recollection and familiarity based processes in recognition memory. Here we present evidence from recent work using episodic memory tasks in animals that allows us to explore these issues in more depth. We review studies that demonstrate triple dissociations within the medial temporal lobe, with only the hippocampal system being necessary for episodic memory. Similarly we review behavioural evidence for a dissociation in a task of episodic memory in rats where animals with lesions of the fornix are only impaired at recollection of the episodic memory, not recognition within the same trial. This work, then, supports recent models of dissociable neural systems within the medial temporal lobe but also raises questions for future investigation about the interactions of these medial temporal lobe memory systems with other structures.
Collapse
Affiliation(s)
- Alexander Easton
- Department of Psychology, Durham University, Science Site, Durham, UK.
| | | |
Collapse
|
9
|
Browning PGF, Gaffan D, Croxson PL, Baxter MG. Severe scene learning impairment, but intact recognition memory, after cholinergic depletion of inferotemporal cortex followed by fornix transection. Cereb Cortex 2009; 20:282-93. [PMID: 19447862 PMCID: PMC2803729 DOI: 10.1093/cercor/bhp097] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To examine the generality of cholinergic involvement in visual memory in primates, we trained macaque monkeys either on an object-in-place scene learning task or in delayed nonmatching-to-sample (DNMS). Each monkey received either selective cholinergic depletion of inferotemporal cortex (including the entorhinal cortex and perirhinal cortex) with injections of the immunotoxin ME20.4-saporin or saline injections as a control and was postoperatively retested. Cholinergic depletion of inferotemporal cortex was without effect on either task. Each monkey then received fornix transection because previous studies have shown that multiple disconnections of temporal cortex can produce synergistic impairments in memory. Fornix transection mildly impaired scene learning in monkeys that had received saline injections but severely impaired scene learning in monkeys that had received cholinergic lesions of inferotemporal cortex. This synergistic effect was not seen in monkeys performing DNMS. These findings confirm a synergistic interaction in a macaque monkey model of episodic memory between connections carried by the fornix and cholinergic input to the inferotemporal cortex. They support the notion that the mnemonic functions tapped by scene learning and DNMS have dissociable neural substrates. Finally, cholinergic depletion of inferotemporal cortex, in this study, appears insufficient to impair memory functions dependent on an intact inferotemporal cortex.
Collapse
Affiliation(s)
- Philip G F Browning
- Department of Experimental Psychology, Oxford University, South Parks Road, Oxford OX1 3UD, UK.
| | | | | | | |
Collapse
|
10
|
Dranias MR, Grossberg S, Bullock D. Dopaminergic and non-dopaminergic value systems in conditioning and outcome-specific revaluation. Brain Res 2008; 1238:239-87. [PMID: 18674518 DOI: 10.1016/j.brainres.2008.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 11/26/2022]
Abstract
Animals are motivated to choose environmental options that can best satisfy current needs. To explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal VAlues Triggers Option Revaluations) neural model. MOTIVATOR describes cognitive-emotional interactions between higher-order sensory cortices and an evaluative neuraxis composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected current value of the subjective outcome that the CS predicts, constrained by the current state of deprivation or satiation. The amygdala relays the expected value information to orbitofrontal cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective values of objects. These values guide behavioral choices. The model basal ganglia detect errors in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly modulated by dopamine. The model is used to address tasks that examine food-specific satiety, Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model simulations successfully reproduce discharge dynamics of known cell types, including signals that predict saccadic reaction times and CS-dependent changes in systolic blood pressure.
Collapse
Affiliation(s)
- Mark R Dranias
- Department of Cognitive and Neural Systems, Center for Adaptive Systems and Center of Excellence for Learning in Education, Science, and Technology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
11
|
Graham KS, Lee ACH, Barense MD. Invited Address at the Occasion of the Bertelson Award 2005 Impairments in visual discrimination in amnesia: Implications for theories of the role of medial temporal lobe regions in human memory. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/09541440701554110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Baxter MG, Browning PGF, Mitchell AS. Perseverative interference with object-in-place scene learning in rhesus monkeys with bilateral ablation of ventrolateral prefrontal cortex. Learn Mem 2008; 15:126-32. [PMID: 18299439 DOI: 10.1101/lm.804508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with bilateral ablations of ventrolateral prefrontal cortex in object-in-place scene learning. These monkeys were mildly impaired in scene learning relative to their own preoperative performance, similar in severity to that of monkeys with bilateral ablation of orbital prefrontal cortex. An analysis of response types showed that the monkeys with lesions were specifically impaired in responding to negative feedback during learning: The post-operative increase in errors was limited to trials in which the first response to each new problem, made on the basis of trial and error, was incorrect. This perseverative pattern of deficit was not observed in the same analysis of response types in monkeys with bilateral ablations of the orbital prefrontal cortex, who were equally impaired on trials with correct and incorrect first responses. This may represent a specific signature of ventrolateral prefrontal involvement in episodic learning and memory.
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, United Kingdom
| | | | | |
Collapse
|
13
|
Picchioni M, Matthiasson P, Broome M, Giampietro V, Brammer M, Mathes B, Fletcher P, Williams S, McGuire P. Medial temporal lobe activity at recognition increases with the duration of mnemonic delay during an object working memory task. Hum Brain Mapp 2008; 28:1235-50. [PMID: 17358019 PMCID: PMC6871489 DOI: 10.1002/hbm.20357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Object working memory (WM) engages a disseminated neural network, although the extent to which the length of time that data is held in WM influences regional activity within this network is unclear. We used functional magnetic resonance imaging to study a delayed matching to sample task in 14 healthy subjects, manipulating the duration of mnemonic delay. Across all lengths of delay, successful recognition was associated with the bilateral engagement of the inferior and middle frontal gyri and insula, the medial and inferior temporal, dorsal anterior cingulate and the posterior parietal cortices. As the length of time that data was held in WM increased, activation at recognition increased in the medial temporal, medial occipito-temporal, anterior cingulate and posterior parietal cortices. These results confirm the components of an object WM network required for successful recognition, and suggest that parts of this network, including the medial temporal cortex, are sensitive to the duration of mnemonic delay.
Collapse
Affiliation(s)
- Marco Picchioni
- King's College London, Institute of Psychiatry, Section of Neuroimaging, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Browning PGF, Easton A, Buckley MJ, Gaffan D. The role of prefrontal cortex in object-in-place learning in monkeys. Eur J Neurosci 2006; 22:3281-91. [PMID: 16367793 DOI: 10.1111/j.1460-9568.2005.04477.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous ablation studies in monkeys suggest that prefrontal cortex is involved in a wide range of learning and memory tasks. However, monkeys with crossed unilateral lesions of frontal and temporal cortex are unimpaired at concurrent object-reward association learning but are impaired at conditional learning and the implementation of memory-based performance rules. We trained seven monkeys preoperatively on an associative learning task that required them to associate objects embedded in unique complex scenes with reward. Three monkeys then had crossed unilateral lesions of frontal and inferior temporal cortex and the remaining monkeys had bilateral prefrontal cortex ablation. Both groups were severely impaired postoperatively. These results show that both bilateral prefrontal cortex ablation and frontal-temporal disconnection impair associative learning for objects embedded in scenes. The results provide evidence that the function of frontal-temporal interactions in memory is not limited to conditional learning tasks and memory-dependent performance rules. We propose that rapid object-in-place learning requires the interaction of frontal cortex with inferotemporal cortex because visual object and contextual information which is captured over multiple saccades must be processed as a unique complex event that is extended in time. The present results suggest a role for frontal-temporal interaction in the integration of visual information over time.
Collapse
Affiliation(s)
- Philip G F Browning
- Department of Experimental Psychology, South Parks Road, Oxford University, Oxford OX1 3UD, UK.
| | | | | | | |
Collapse
|
15
|
Buckley MJ, Gaffan D. Perirhinal cortical contributions to object perception. Trends Cogn Sci 2006; 10:100-7. [PMID: 16469525 DOI: 10.1016/j.tics.2006.01.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 11/28/2005] [Accepted: 01/20/2006] [Indexed: 11/29/2022]
Abstract
The traditional theory of the medial temporal lobe (MTL) memory system asserts that the primate MTL (hippocampus, perirhinal, entorhinal and parahippocampal cortices) is exclusively involved in consolidating declarative memories. However, several recent reports have directly challenged this dogma by arguing that MTL structures also contribute to perception. Controversy remains as many of the behavioural tasks used have confounded memory with perception. We review the evidence here and highlight new studies in humans and macaques that indicate a perceptual role for MTL in the absence of such confounds. We argue that the challenge to MTL memory system theory is substantiated and that the implications are considerable, namely that most psychologists and neuroscientists have held a fundamentally flawed view of how memory is implemented in the brain.
Collapse
Affiliation(s)
- Mark J Buckley
- Department of Experimental Psychology, Oxford University, UK.
| | | |
Collapse
|
16
|
Abstract
Four rhesus monkeys (Macaca mulatta) were trained preoperatively in a test of object-in-place scene memory. They were presented daily with lists of unique computer-generated scenes each containing a spatial array of multiple individual objects. Within each scene, objects to be discriminated appeared in the foreground, each occupying a unique location, and monkeys were required to correctly discriminate the rewarded object to receive a food reward. Once this preoperative criterion was attained, the monkeys received bilateral entorhinal cortex ablation performed as either one or two surgical operations with a period of testing following each. Postoperatively, they were significantly impaired in learning new object-in-place scene problems. These results show that the entorhinal cortex, like anatomically related structures including the perirhinal cortex and the fornix, contributes to object-in-place scene learning.
Collapse
Affiliation(s)
- David P Charles
- Department of Experimental Psychology, Oxford University, South Parks Road, Oxford OX1 3UD, UK.
| | | | | |
Collapse
|
17
|
Buckley MJ, Charles DP, Browning PGF, Gaffan D. Learning and Retrieval of Concurrently Presented Spatial Discrimination Tasks: Role of the Fornix. Behav Neurosci 2004; 118:138-49. [PMID: 14979790 DOI: 10.1037/0735-7044.118.1.138] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In macaque monkeys (Macaco mulatta), memory for scenes presented on touch screens is fornix dependent. However, scene learning is not a purely spatial task, and existing direct evidence for a fornix role in spatial memory comes exclusively from tasks involving learning about food-reward locations. Here the authors demonstrate that fornix transection impairs learning about spatial stimuli presented on touch screens. Using a new concurrent spatial discrimination learning task, they found that fornix transection did not impair recall of preoperatively learned problems. Relearning, on the other hand, was mildly impaired, and new learning was strongly impaired. New learning of smaller sets of harder problems was also markedly impaired, as was spatial configured learning. This pattern supports a functional specialization according to stimulus domain in the medial temporal lobe.
Collapse
Affiliation(s)
- Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
18
|
Wallace DG, Whishaw IQ. NMDA lesions of Ammon's horn and the dentate gyrus disrupt the direct and temporally paced homing displayed by rats exploring a novel environment: evidence for a role of the hippocampus in dead reckoning. Eur J Neurosci 2003; 18:513-23. [PMID: 12911747 DOI: 10.1046/j.1460-9568.2003.02772.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dead reckoning, a form of navigation used to locate a present position and to return to a starting position, is used by rats to return to their home base. The present experiment examined whether dead reckoning is displayed by rats during their first exploratory excursions in a novel environment and also examined whether the behaviour requires the integrity of the cells of the hippocampus. Experimental rats, those with NMDA (N-methyl d-aspartate) lesions of Ammon's horn and the dentate gyrus, and control rats could leave a cage to explore a large circular table under light and dark conditions. Home base behaviour, use of olfactory cues, and thigmotaxic- based navigation were evaluated. Temporal, topographical and kinematic analyses were conducted on the first three exploratory excursions that extended at least halfway across the table. Groups did not differ in numbers of exits from the home base, lingering near the home base, distance travelled, or the use of surface cues as might be exemplified by thigmotaxic and olfactory behaviour. Temporal, topographical and kinematic reconstructions of homing behaviour, however, indicated that control rats, but not hippocampal rats, made direct high velocity return trips to the home base in both the light and the dark. Peak velocity of the trips occurred at the trip midpoint, independent of trip distance, suggesting the movements were preplanned. These results are discussed in relation to the ideas that dead reckoning is used in the homing of exploring rats and that this form of navigation involves the hippocampus.
Collapse
Affiliation(s)
- Douglas G Wallace
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 Canada.
| | | |
Collapse
|
19
|
Easton A, Gaffan D. Insights into the nature of fronto-temporal interactions from a biconditional discrimination task in the monkey. Behav Brain Res 2002; 136:217-26. [PMID: 12385808 DOI: 10.1016/s0166-4328(02)00136-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work in monkeys has shown that both frontal and inferior temporal cortices are required to solve visual learning tasks. When communication between these cortical areas is prevented within the same hemisphere by crossed lesions of the frontal cortex in one hemisphere and the inferior temporal cortex in the opposite hemisphere, most learning tasks are impaired, but learning of object-reward associations is unimpaired. The current experiment aims to understand further the role of the interaction between the frontal and inferior temporal cortices in learning tasks. We trained monkeys on a biconditional discrimination task, in which different visual cues guided behaviour towards choice objects. One visual cue predicted immediate delivery of reward to a correct response, the other visual cue predicted a delayed delivery of reward to a correct response. Pre-operative behavioural data clearly shows that the monkeys form expectations of the reward outcome for the individual cues and choice objects. Crossed lesions of frontal and inferior temporal cortices, however, produce no impairment on this task. The result suggests (in combination with previous experiments) that task difficulty does not determine the reliance of a task on interactions between the frontal cortex and the inferior temporal cortex within the same hemisphere. Instead, we propose that tasks that can be solved by using expectation of the reward outcome do not require interaction of frontal and inferior temporal cortices within the same hemisphere. The results are discussed in the context of other data on frontal interactions with inferior temporal cortex in learning tasks.
Collapse
Affiliation(s)
- Alexander Easton
- School of Psychology, University of Nottingham, University Park, UK.
| | | |
Collapse
|
20
|
Abstract
The medial temporal lobe is indispensable for normal memory processing in both human and non-human primates, as is shown by the fact that large lesions in it produce a severe impairment in the acquisition of new memories. The widely accepted inference from this observation is that the medial temporal cortex, including the hippocampal, entorhinal and perirhinal cortex, contains a memory system or multiple memory systems, which are specialized for the acquisition and storage of memories. Nevertheless, there are some strong arguments against this idea: medial temporal lesions produce amnesia by disconnecting the entire temporal cortex from neuromodulatory afferents arising in the brainstem and basal forebrain, not by removing cortex; the temporal cortex is essential for perception as well as for memory; and response properties of temporal cortical neurons make it impossible that some kinds of memory trace could be stored in the temporal lobe. All cortex is plastic, and it is possible that the same rules of plasticity apply to all cortical areas; therefore, memory traces are stored in widespread cortical areas rather than in a specialized memory system restricted to the temporal lobe. Among these areas, the prefrontal cortex has an important role in learning and memory, but is best understood as an area with no specialization of function.
Collapse
Affiliation(s)
- David Gaffan
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
21
|
Abstract
The amygdala -- an almond-shaped group of nuclei at the heart of the telencephalon -- has been associated with a range of cognitive functions, including emotion, learning, memory, attention and perception. Most current views of amygdala function emphasize its role in negative emotions, such as fear, and in linking negative emotions with other aspects of cognition, such as learning and memory. However, recent evidence supports a role for the amygdala in processing positive emotions as well as negative ones, including learning about the beneficial biological value of stimuli. Indeed, the amygdala's role in stimulus-reward learning might be just as important as its role in processing negative affect and fear conditioning.
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Psychology, Harvard University, 906 William James Hall, 33 Kirkland Street, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
22
|
Hampton RR, Murray EA. Learning of discriminations is impaired, but generalization to altered views is intact, in monkeys (Macaca mulatta) with perirhinal cortex removal. Behav Neurosci 2002; 116:363-77. [PMID: 12049317 DOI: 10.1037/0735-7044.116.3.363] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhesus monkeys (Macaca mulatta) were taught a large number of visual discriminations and then either received bilateral removal of the perirhinal cortex or were retained as unoperated controls. Operated monkeys were impaired in retention of the preoperatively learned problems. To test for generalization to novel views, the monkeys were required to discriminate, in probe trials, familiar pairs of images that were rotated, enlarged, shrunken, presented with color deleted, or degraded by masks. Although these manipulations reduced accuracy in both groups, the operated group was not differentially affected. In contrast, the same operated monkeys were impaired in reversal of familiar discriminations and in acquisition of new single-pair discriminations. These results indicate an important role for perirhinal cortex in visual learning, memory, or both, and show that under a variety of conditions, perirhinal cortex is not critical for the identification of stimuli.
Collapse
Affiliation(s)
- Robert R Hampton
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, Maryland 20892-4415, USA.
| | | |
Collapse
|
23
|
Abstract
J.A. Horel's critique of what he termed "the hippocampal memory hypothesis" turns out, 23 years later, to have been remarkably discerning and prophetic. There is now an overwhelming weight of evidence to confirm his four key proposals: that selective destruction of the hippocampus or fornix does not produce dense global amnesia; that the effects of hippocampal or fornix lesions are not primarily a memory impairment, but an impairment in processing spatial information; that damage to the anterior temporal stem is part of the explanation of dense temporal lobe amnesia; and that the interaction of temporal cortex with prefrontal cortex is essential in memory. This review summarizes the modern evidence that reinforces each of these four proposals. A final section argues that, not only in the case of the hippocampus but also in the case of other temporal and frontal cortical areas that are involved in normal memory, the concept of a "memory system" is harmful.
Collapse
Affiliation(s)
- D Gaffan
- Department of Experimental Psychology, Oxford University, South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
24
|
Erb S, Shaham Y, Stewart J. Stress-induced relapse to drug seeking in the rat: role of the bed nucleus of the stria terminalis and amygdala. Stress 2001; 4:289-303. [PMID: 22432148 DOI: 10.3109/10253890109014753] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is growing interest in the role that the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA), components of the extended amygdala, play in drug addiction. Within the BNST and CeA, there is an extensive system of intrinsic, primarily GABAergic, interconnections known to synthesize a variety of neuropeptides, including corticotrophin-releasing factor (CRF). The actions of CRF at extrahypothalamic sites,including the BNST and CeA, have been implicated in stress responses and in the aversive effects of withdrawal from drugs of abuse. Most recently, we have shown a critical role for extrahypothalamic CRF in stress-induced reinstatement of drug seeking in rats. In attempting to determine which brain circuitry mediates the effect of stress on relapse and, more specifically, where in the brain CRF acts to initiate the behaviours involved in relapse, we focused on the BNST and CeA. In the present paper, we summarize studies we have conducted that explore the role of these brain sites in stress-induced relapse to heroin and cocaine seeking, and then consider how our findings can be understood within the more general context of what is known about the role of the BNST and CeA in stress-related and general approach behaviours, such as drug seeking.
Collapse
Affiliation(s)
- S Erb
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 1455 de Maisonneuve Blvd W, Montreal, Que., Canada.
| | | | | |
Collapse
|
25
|
Easton A, Parker A, Gaffan D. Crossed unilateral lesions of medial forebrain bundle and either inferior temporal or frontal cortex impair object recognition memory in Rhesus monkeys. Behav Brain Res 2001; 121:1-10. [PMID: 11275279 DOI: 10.1016/s0166-4328(00)00384-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In monkeys, section of the fornix, amygdala and anterior temporal stem results in a severe anterograde amnesia. Immunolesions of the cholinergic cells of the basal forebrain suggest that this amnesia is a result of isolating the inferior temporal cortex and medial temporal lobe from their cholinergic basal forebrain afferents. In this experiment, six monkeys were trained in a delayed match-to-sample task and then received a section of the medial forebrain bundle in one hemisphere and an ablation of either the frontal or inferior temporal cortex in the opposite hemisphere. All the animals were severely impaired in the performance of this task following this surgery, and the severity of the impairment was independent of the cortical area from which the medial forebrain bundle was disconnected. These results support a model of fronto-temporal interaction via the basal forebrain in new learning, in which midbrain sites related to reward modulate the cholinergic basal forebrain activity.
Collapse
Affiliation(s)
- A Easton
- Department of Experimental Psychology, Oxford University, South Parks Road, Oxford OX1 3UD, UK.
| | | | | |
Collapse
|
26
|
Easton A, Gaffan D. Crossed unilateral lesions of the medial forebrain bundle and either inferior temporal or frontal cortex impair object-reward association learning in Rhesus monkeys. Neuropsychologia 2001; 39:71-82. [PMID: 11115656 DOI: 10.1016/s0028-3932(00)00098-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In an accompanying paper we showed that combined transection of the fornix, amygdala and temporal stem in monkeys produced dense amnesia, including an impairment in visual object-reward association learning. We proposed that this combined surgical section had its effect by isolating temporal cortex from the ascending projections of the basal forebrain and midbrain structures. To test this hypothesis, in the present experiment we disconnected the inferior temporal cortex from these basal forebrain and midbrain structures, while sparing cortical white matter, by crossed unilateral lesions of the medial forebrain bundle in one hemisphere and inferior temporal cortex in the opposite hemisphere. The aim of the medial forebrain bundle lesion was to section axons of cells, both those that project to the cortex via the medial forebrain bundle, and those which control the activity of these same structures. A single unilateral lesion alone had no effect on the ability to learn and remember visual object-reward associations, but the crossed unilateral lesions produced an impairment in this task which was equal in severity to the impairment seen earlier after bilateral section of the fornix, amygdala and temporal stem. The impairment was not an effect of interrupting fibres to the cortex from the ventromedial hypothalamus, or of unilateral sensory neglect. This supports the hypothesis that these midbrain and basal forebrain afferents to the inferior temporal cortex are important for new visual learning. Furthermore, an impairment of equal severity was demonstrated in a separate group of animals that received crossed unilateral lesions of the medial forebrain bundle in one hemisphere and of the frontal cortex in the opposite hemisphere. We propose that the frontal cortex acts to modulate basal forebrain activity which in turn reinforces object representations in the inferior temporal cortex during learning.
Collapse
Affiliation(s)
- A Easton
- Department of Experimental Psychology, South Parks Rd, Oxford University, OX1 3UD, Oxford, UK.
| | | |
Collapse
|
27
|
Baxter MG, Murray EA. Impairments in visual discrimination learning and recognition memory produced by neurotoxic lesions of rhinal cortex in rhesus monkeys. Eur J Neurosci 2001; 13:1228-38. [PMID: 11285020 DOI: 10.1046/j.0953-816x.2001.01491.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much work on the cognitive functions of the primate rhinal (i.e. entorhinal plus perirhinal) cortex has been based on aspiration lesions of this structure, which might disrupt fibres passing nearby and through the rhinal cortex in addition to removing the cell bodies of the rhinal cortex itself. To determine whether damage limited to the cell bodies of the rhinal cortex is sufficient to impair visual learning and memory, four rhesus monkeys (Macaca mulatta) were preoperatively trained on a battery of visual learning and memory tasks, including single-pair discrimination learning for primary reinforcement, single-pair discrimination reversals, concurrent discrimination learning and reversal, and delayed matching-to-sample. Following acquisition of these tasks and a preoperative performance test, ibotenic acid was injected bilaterally into the rhinal cortex, and the monkeys were retested. Consistent with the results of studies using aspiration lesions, the monkeys were impaired on single-pair discrimination learning as well as recognition memory performance postoperatively, although reliable reversal learning impairments were not observed. The magnitude of postoperative impairment in discrimination learning was not correlated with the magnitude of postoperative impairment in recognition memory, suggesting a possible dissociation between these functions within the rhinal cortex. The correspondence of behavioural deficits following aspiration and neurotoxic lesions of the rhinal cortex validates the attribution of various cognitive functions to this structure, based on the results of studies with aspiration lesions.
Collapse
Affiliation(s)
- M G Baxter
- Department of Psychology, Harvard University, 906 William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA
| | | |
Collapse
|